-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathRobert_AI.py
324 lines (270 loc) · 11.3 KB
/
Robert_AI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# Robert's attempt
# Game rules:
# -No check
# -No castling
# -No En passant
# game state is a list of pieces
# board state should probably be hardcoded for speed.
# Each piece should include:
# -position
# -player (can this be merged into everything else?)
# -an iterator that takes the board state and returns a list of possible board states
# -a function for taking the piece's position and return it's value?
import sys
import time
# Define global rules
board_size = 8
board = [(row, col) for row in range(0, board_size, 1) for col in range(0, board_size, 1)]
def move_set(move_dirs, move_dist):
"""Define piece movement functions
They return a list of valid states"""
def piece_moves(state, piece_name, player):
# Returns the list of moves
current_piece = state[piece_name]
current_position = current_piece['posn']
new_states = []
# Check player
if player != current_piece['player']:
return []
for move_dir in move_dirs:
for dist in range(1, move_dist+1):
position = (current_position[0] + dist * move_dir[0], current_position[1] + dist * move_dir[1])
# Check for bad collisions
if position not in board:
break
is_blocked = False
for piece2 in state.values():
if piece2['posn'] == position and piece2['player'] == player:
is_blocked = True
break
if is_blocked:
break
# Good position found
new_piece = current_piece.copy()
new_piece.update({'posn': position})
new_state = state.copy()
# Check for captures
did_capture = False
for piece_name2, piece2 in list(new_state.items()):
if piece2['posn'] == position and piece2['player'] != player:
did_capture = True
del new_state[piece_name2]
new_state.update({piece_name: new_piece})
new_states.append(new_state)
# Checks if next posn valid i.e if movement blocked by capture
if did_capture:
break
return new_states
return piece_moves
def move_pawn(move_dir):
def pawn_moves(state, piece_name, player):
# Returns the list of moves for pawns
current_piece = state[piece_name]
current_position = current_piece['posn']
new_states = []
# Check player
if player != current_piece['player']:
return []
# Can move up, if nothing is in the way.
position = (current_position[0] + move_dir, current_position[1])
# Check for bad collisions
is_blocked = position not in board or any(i_piece['posn'] == position for i_piece in state.values())
if not is_blocked:
new_piece = current_piece.copy()
new_piece.update({'posn': position})
new_state = state.copy()
new_state.update({piece_name: new_piece})
new_states.append(new_state)
# if on first row, can move twice
if current_position[0] == 1 or current_position[0] == board_size - 2:
position = (position[0] + move_dir, position[1])
# Check for bad collisions
is_blocked = position not in board or any(i_piece['posn'] == position for i_piece in state.values())
if not is_blocked:
new_piece = current_piece.copy()
new_piece.update({'posn': position})
new_state = state.copy()
new_state.update({piece_name: new_piece})
new_states.append(new_state)
# Can take diagonally.
for position in [(current_position[0] + move_dir, current_position[1] - 1),
(current_position[0] + move_dir, current_position[1] + 1)]:
# Must move into hostile piece
if not any(i_piece['posn'] == position and i_piece['player'] != player for i_piece in state.values()):
continue
# Good position found
# Check for Queening
if position[0] in (0, 7):
# Check for Queening
new_piece = construct_piece('q' if player else 'Q', position[0], position[1])
else:
new_piece = current_piece.copy()
new_piece.update({'posn': position})
new_state = state.copy()
# Check for captures
did_capture = False
for piece_name2, piece2 in list(new_state.items()):
if piece2['posn'] == position and piece2['player'] != player:
did_capture = True
del new_state[piece_name2]
if not did_capture:
print("Bad pawn capture")
sys.exit(1)
new_state.update({piece_name: new_piece})
new_states.append(new_state)
return new_states
return pawn_moves
def get_value(base_val, value_matrix):
# Normalise value matrix
error = sum([sum(row) for row in value_matrix]) / board_size ** 2
value_matrix = [[element * error for element in row] for row in value_matrix]
def piece_value(posn):
return base_val * value_matrix[posn[0]][posn[1]]
return piece_value
diversion_factor = 1/100000
default_posn_values = [[(1 - diversion_factor * (col - (board_size-1)/2) ** 2)
* (1 - diversion_factor * (row - (board_size-1)/2) ** 2)
for col in range(0, board_size, 1)] for row in range(0, board_size, 1)]
flat_posn_values = [[1 for col in range(0, board_size, 1)] for row in range(0, board_size, 1)]
def pawn_value(base_val, move_dir):
# Pawns use a different value system, they prefer to move up if possible.
diversion_factor = 1 / 100000
value_matrix = [[(1 - diversion_factor * (col - (board_size - 1) / 2) ** 2) *
(2 + move_dir * (row + 1)/board_size) for col in range(0, board_size, 1)]
for row in range(0, board_size, 1)]
# Normalise value matrix
error = sum([sum(row) for row in value_matrix]) / board_size ** 2
value_matrix = [[element * error for element in row] for row in value_matrix]
def piece_value(posn):
return base_val * value_matrix[posn[0]][posn[1]]
return piece_value
class StalemateException(Exception):
"""To be thrown when a stalemate is encountered."""
pass
def search(depth, old_state, player):
# This function returns the best possible next game state for the player after searching to depth and the value for
# that player.
# generate list of game states
new_states = [state for i_piece in old_state for state in old_state[i_piece]['moves'](old_state, i_piece, player)]
if len(new_states) == 0:
raise StalemateException
# valuate over them
new_depth = list(depth)
new_depth[0] += 1
values = [
-evaluate(new_depth, state, 1-player, len(state) != len(old_state))
for state in new_states
]
best_value = max(values)
best_state = new_states[values.index(best_value)]
return best_state, best_value
def evaluate(depth, old_state, player, force_search):
# This function returns the value of a particular game state
# Check for loss condition, then recurse if necessary.
if not any([piece['player'] == player and piece['symbol'].lower() == 'k' for piece in old_state.values()]):
value = -float('inf')
elif (depth[0] >= depth[1] and not force_search) or depth[0] >= depth[2]:
value = sum([piece['value'](piece['posn']) * (1 - 2 * (piece['player'] != player))
for piece in old_state.values()])
else:
# Value of this state is equal to the value of the next one.
try:
(next_state, value) = search(depth, old_state, player)
except StalemateException:
value = 0
return value
knight_dirs = [(-2, -1), (-2, 1), (-1, -2), (-1, 2), (1, -2), (1, 2), (2, -1), (2, 1)]
bish_dirs = [(1, 1), (-1, -1), (-1, 1), (1, -1)]
rook_dirs = [(1, 0), (-1, 0), (0, 1), (0, -1)]
royal_dirs = rook_dirs + bish_dirs
piece_library = {
'p': {'symbol': 'p',
'player': 1,
'moves': move_pawn(-1),
'value': pawn_value(1, -1),
},
'P': {'symbol': 'P',
'player': 0,
'moves': move_pawn(1),
'value': pawn_value(1, 1),
},
'n': {'symbol': 'n',
'player': 1,
'moves': move_set(knight_dirs, 1),
'value': get_value(3, default_posn_values),
},
'N': {'symbol': 'N',
'player': 0,
'moves': move_set(knight_dirs, 1),
'value': get_value(3, default_posn_values),
},
'b': {'symbol': 'b',
'player': 1,
'moves': move_set(bish_dirs, 999),
'value': get_value(3.5, default_posn_values),
},
'B': {'symbol': 'B',
'player': 0,
'moves': move_set(bish_dirs, 999),
'value': get_value(3.5, default_posn_values),
},
'r': {'symbol': 'r',
'player': 1,
'moves': move_set(rook_dirs, 999),
'value': get_value(5, default_posn_values),
},
'R': {'symbol': 'R',
'player': 0,
'moves': move_set(rook_dirs, 999),
'value': get_value(5, default_posn_values),
},
'q': {'symbol': 'q',
'player': 1,
'moves': move_set(royal_dirs, 999),
'value': get_value(9, default_posn_values),
},
'Q': {'symbol': 'Q',
'player': 0,
'moves': move_set(royal_dirs, 999),
'value': get_value(9, default_posn_values),
},
'k': {'symbol': 'k',
'player': 1,
'moves': move_set(royal_dirs, 1),
'value': get_value(999, default_posn_values),
},
'K': {'symbol': 'K',
'player': 0,
'moves': move_set(royal_dirs, 1),
'value': get_value(999, flat_posn_values),
},
'.': {},
}
def construct_piece(in_char, row, col):
""" Converts from characters in a list of strings to piece dicts."""
if in_char == '.':
return None
properties = piece_library[in_char]
properties.update({'posn': (row, col),
# 'ID': properties['symbol'] + str(row) + str(col),
})
return properties.copy()
def main(history, white_time, black_time):
start_player = (len(history) - 1) % 2
# Load initial game state
board_text = history[-1]
start_state = {}
for row in range(0, board_size, 1):
for col in range(0, board_size, 1):
symbol = board_text[row][col]
if symbol == '.':
continue
start_state.update({symbol + str(row) + str(col): construct_piece(symbol, row, col)})
depth = [0, 2, 4]
# [Current depth, max depth if no exchanges, max depth if exchanging
(new_state, score) = search(depth, start_state, start_player)
# Unparse
new_board_text = [['.' for col in range(0, board_size, 1)] for row in range(0, board_size, 1)]
for piece in new_state.values():
new_board_text[piece['posn'][0]][piece['posn'][1]] = piece['symbol']
return new_board_text