-
Notifications
You must be signed in to change notification settings - Fork 14
/
train.py
504 lines (396 loc) · 21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
from data import *
from utils.augmentations import SSDAugmentation, BaseTransform
from utils.functions import MovingAverage, SavePath
from utils.logger import Log
from utils import timer
from layers.modules import MultiBoxLoss
from yolact import Yolact
import os
import sys
import time
import math, random
from pathlib import Path
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.init as init
import torch.utils.data as data
import numpy as np
import argparse
import datetime
# Oof
import eval as eval_script
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
parser = argparse.ArgumentParser(
description='Yolact Training Script')
parser.add_argument('--batch_size', default=8, type=int,
help='Batch size for training')
parser.add_argument('--resume', default=None, type=str,
help='Checkpoint state_dict file to resume training from. If this is "interrupt"'\
', the model will resume training from the interrupt file.')
parser.add_argument('--start_iter', default=-1, type=int,
help='Resume training at this iter. If this is -1, the iteration will be'\
'determined from the file name.')
parser.add_argument('--num_workers', default=4, type=int,
help='Number of workers used in dataloading')
parser.add_argument('--cuda', default=True, type=str2bool,
help='Use CUDA to train model')
parser.add_argument('--lr', '--learning_rate', default=None, type=float,
help='Initial learning rate. Leave as None to read this from the config.')
parser.add_argument('--momentum', default=None, type=float,
help='Momentum for SGD. Leave as None to read this from the config.')
parser.add_argument('--decay', '--weight_decay', default=None, type=float,
help='Weight decay for SGD. Leave as None to read this from the config.')
parser.add_argument('--gamma', default=None, type=float,
help='For each lr step, what to multiply the lr by. Leave as None to read this from the config.')
parser.add_argument('--save_folder', default='weights/',
help='Directory for saving checkpoint models.')
parser.add_argument('--log_folder', default='logs/',
help='Directory for saving logs.')
parser.add_argument('--config', default=None,
help='The config object to use.')
parser.add_argument('--save_interval', default=10000, type=int,
help='The number of iterations between saving the model.')
parser.add_argument('--validation_size', default=5000, type=int,
help='The number of images to use for validation.')
parser.add_argument('--validation_epoch', default=2, type=int,
help='Output validation information every n iterations. If -1, do no validation.')
parser.add_argument('--keep_latest', dest='keep_latest', action='store_true',
help='Only keep the latest checkpoint instead of each one.')
parser.add_argument('--keep_latest_interval', default=100000, type=int,
help='When --keep_latest is on, don\'t delete the latest file at these intervals. This should be a multiple of save_interval or 0.')
parser.add_argument('--dataset', default=None, type=str,
help='If specified, override the dataset specified in the config with this one (example: coco2017_dataset).')
parser.add_argument('--no_log', dest='log', action='store_false',
help='Don\'t log per iteration information into log_folder.')
parser.add_argument('--log_gpu', dest='log_gpu', action='store_true',
help='Include GPU information in the logs. Nvidia-smi tends to be slow, so set this with caution.')
parser.add_argument('--no_interrupt', dest='interrupt', action='store_false',
help='Don\'t save an interrupt when KeyboardInterrupt is caught.')
parser.add_argument('--batch_alloc', default=None, type=str,
help='If using multiple GPUS, you can set this to be a comma separated list detailing which GPUs should get what local batch size (It should add up to your total batch size).')
parser.add_argument('--no_autoscale', dest='autoscale', action='store_false',
help='YOLACT will automatically scale the lr and the number of iterations depending on the batch size. Set this if you want to disable that.')
parser.set_defaults(keep_latest=False, log=True, log_gpu=False, interrupt=True, autoscale=True)
args = parser.parse_args()
if args.config is not None:
set_cfg(args.config)
if args.dataset is not None:
set_dataset(args.dataset)
if args.autoscale and args.batch_size != 8:
factor = args.batch_size / 8
if __name__ == '__main__':
print('Scaling parameters by %.2f to account for a batch size of %d.' % (factor, args.batch_size))
cfg.lr *= factor
cfg.max_iter //= factor
cfg.lr_steps = [x // factor for x in cfg.lr_steps]
# Update training parameters from the config if necessary
def replace(name):
if getattr(args, name) == None: setattr(args, name, getattr(cfg, name))
replace('lr')
replace('decay')
replace('gamma')
replace('momentum')
# This is managed by set_lr
cur_lr = args.lr
if torch.cuda.device_count() == 0:
print('No GPUs detected. Exiting...')
exit(-1)
if args.batch_size // torch.cuda.device_count() < 6:
if __name__ == '__main__':
print('Per-GPU batch size is less than the recommended limit for batch norm. Disabling batch norm.')
cfg.freeze_bn = True
loss_types = ['B', 'C', 'M', 'P', 'D', 'E', 'S', 'I']
if torch.cuda.is_available():
if args.cuda:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
if not args.cuda:
print("WARNING: It looks like you have a CUDA device, but aren't " +
"using CUDA.\nRun with --cuda for optimal training speed.")
torch.set_default_tensor_type('torch.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
class NetLoss(nn.Module):
"""
A wrapper for running the network and computing the loss
This is so we can more efficiently use DataParallel.
"""
def __init__(self, net:Yolact, criterion:MultiBoxLoss):
super().__init__()
self.net = net
self.criterion = criterion
def forward(self, images, targets, masks, num_crowds):
preds = self.net(images)
losses = self.criterion(self.net, preds, targets, masks, num_crowds)
return losses
class CustomDataParallel(nn.DataParallel):
"""
This is a custom version of DataParallel that works better with our training data.
It should also be faster than the general case.
"""
def scatter(self, inputs, kwargs, device_ids):
# More like scatter and data prep at the same time. The point is we prep the data in such a way
# that no scatter is necessary, and there's no need to shuffle stuff around different GPUs.
devices = ['cuda:' + str(x) for x in device_ids]
splits = prepare_data(inputs[0], devices, allocation=args.batch_alloc)
return [[split[device_idx] for split in splits] for device_idx in range(len(devices))], \
[kwargs] * len(devices)
def gather(self, outputs, output_device):
out = {}
for k in outputs[0]:
out[k] = torch.stack([output[k].to(output_device) for output in outputs])
return out
def train():
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
dataset = COCODetection(image_path=cfg.dataset.train_images,
info_file=cfg.dataset.train_info,
transform=SSDAugmentation(MEANS))
if args.validation_epoch > 0:
setup_eval()
val_dataset = COCODetection(image_path=cfg.dataset.valid_images,
info_file=cfg.dataset.valid_info,
transform=BaseTransform(MEANS))
# Parallel wraps the underlying module, but when saving and loading we don't want that
yolact_net = Yolact()
net = yolact_net
net.train()
if args.log:
log = Log(cfg.name, args.log_folder, dict(args._get_kwargs()),
overwrite=(args.resume is None), log_gpu_stats=args.log_gpu)
# I don't use the timer during training (I use a different timing method).
# Apparently there's a race condition with multiple GPUs, so disable it just to be safe.
timer.disable_all()
# Both of these can set args.resume to None, so do them before the check
if args.resume == 'interrupt':
args.resume = SavePath.get_interrupt(args.save_folder)
elif args.resume == 'latest':
args.resume = SavePath.get_latest(args.save_folder, cfg.name)
if args.resume is not None:
print('Resuming training, loading {}...'.format(args.resume))
yolact_net.load_weights(args.resume)
if args.start_iter == -1:
args.start_iter = SavePath.from_str(args.resume).iteration
else:
print('Initializing weights...')
yolact_net.init_weights(backbone_path=args.save_folder + cfg.backbone.path)
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum,
weight_decay=args.decay)
criterion = MultiBoxLoss(num_classes=cfg.num_classes,
pos_threshold=cfg.positive_iou_threshold,
neg_threshold=cfg.negative_iou_threshold,
negpos_ratio=cfg.ohem_negpos_ratio)
if args.batch_alloc is not None:
args.batch_alloc = [int(x) for x in args.batch_alloc.split(',')]
if sum(args.batch_alloc) != args.batch_size:
print('Error: Batch allocation (%s) does not sum to batch size (%s).' % (args.batch_alloc, args.batch_size))
exit(-1)
net = CustomDataParallel(NetLoss(net, criterion))
if args.cuda:
net = net.cuda()
# Initialize everything
if not cfg.freeze_bn: yolact_net.freeze_bn() # Freeze bn so we don't kill our means
yolact_net(torch.zeros(1, 3, cfg.max_size, cfg.max_size).cuda())
if not cfg.freeze_bn: yolact_net.freeze_bn(True)
# loss counters
loc_loss = 0
conf_loss = 0
iteration = max(args.start_iter, 0)
last_time = time.time()
epoch_size = len(dataset) // args.batch_size
num_epochs = math.ceil(cfg.max_iter / epoch_size)
# Which learning rate adjustment step are we on? lr' = lr * gamma ^ step_index
step_index = 0
data_loader = data.DataLoader(dataset, args.batch_size,
num_workers=args.num_workers,
shuffle=True, collate_fn=detection_collate,
pin_memory=True)
save_path = lambda epoch, iteration: SavePath(cfg.name, epoch, iteration).get_path(root=args.save_folder)
time_avg = MovingAverage()
global loss_types # Forms the print order
loss_avgs = { k: MovingAverage(100) for k in loss_types }
print('Begin training!')
print()
# try-except so you can use ctrl+c to save early and stop training
try:
for epoch in range(num_epochs):
# Resume from start_iter
if (epoch+1)*epoch_size < iteration:
continue
for datum in data_loader:
# Stop if we've reached an epoch if we're resuming from start_iter
if iteration == (epoch+1)*epoch_size:
break
# Stop at the configured number of iterations even if mid-epoch
if iteration == cfg.max_iter:
break
# Change a config setting if we've reached the specified iteration
changed = False
for change in cfg.delayed_settings:
if iteration >= change[0]:
changed = True
cfg.replace(change[1])
# Reset the loss averages because things might have changed
for avg in loss_avgs:
avg.reset()
# If a config setting was changed, remove it from the list so we don't keep checking
if changed:
cfg.delayed_settings = [x for x in cfg.delayed_settings if x[0] > iteration]
# Warm up by linearly interpolating the learning rate from some smaller value
if cfg.lr_warmup_until > 0 and iteration <= cfg.lr_warmup_until:
set_lr(optimizer, (args.lr - cfg.lr_warmup_init) * (iteration / cfg.lr_warmup_until) + cfg.lr_warmup_init)
# Adjust the learning rate at the given iterations, but also if we resume from past that iteration
while step_index < len(cfg.lr_steps) and iteration >= cfg.lr_steps[step_index]:
step_index += 1
set_lr(optimizer, args.lr * (args.gamma ** step_index))
# Zero the grad to get ready to compute gradients
optimizer.zero_grad()
# Forward Pass + Compute loss at the same time (see CustomDataParallel and NetLoss)
losses = net(datum)
losses = { k: (v).mean() for k,v in losses.items() } # Mean here because Dataparallel
loss = sum([losses[k] for k in losses])
# no_inf_mean removes some components from the loss, so make sure to backward through all of it
# all_loss = sum([v.mean() for v in losses.values()])
# Backprop
loss.backward() # Do this to free up vram even if loss is not finite
if torch.isfinite(loss).item():
optimizer.step()
# Add the loss to the moving average for bookkeeping
for k in losses:
loss_avgs[k].add(losses[k].item())
cur_time = time.time()
elapsed = cur_time - last_time
last_time = cur_time
# Exclude graph setup from the timing information
if iteration != args.start_iter:
time_avg.add(elapsed)
if iteration % 10 == 0:
eta_str = str(datetime.timedelta(seconds=(cfg.max_iter-iteration) * time_avg.get_avg())).split('.')[0]
total = sum([loss_avgs[k].get_avg() for k in losses])
loss_labels = sum([[k, loss_avgs[k].get_avg()] for k in loss_types if k in losses], [])
print(('[%3d] %7d ||' + (' %s: %.3f |' * len(losses)) + ' T: %.3f || ETA: %s || timer: %.3f')
% tuple([epoch, iteration] + loss_labels + [total, eta_str, elapsed]), flush=True)
if args.log:
precision = 5
loss_info = {k: round(losses[k].item(), precision) for k in losses}
loss_info['T'] = round(loss.item(), precision)
if args.log_gpu:
log.log_gpu_stats = (iteration % 10 == 0) # nvidia-smi is sloooow
log.log('train', loss=loss_info, epoch=epoch, iter=iteration,
lr=round(cur_lr, 10), elapsed=elapsed)
log.log_gpu_stats = args.log_gpu
iteration += 1
if iteration % args.save_interval == 0 and iteration != args.start_iter:
if args.keep_latest:
latest = SavePath.get_latest(args.save_folder, cfg.name)
print('Saving state, iter:', iteration)
yolact_net.save_weights(save_path(epoch, iteration))
if args.keep_latest and latest is not None:
if args.keep_latest_interval <= 0 or iteration % args.keep_latest_interval != args.save_interval:
print('Deleting old save...')
os.remove(latest)
# This is done per epoch
if args.validation_epoch > 0:
if epoch % args.validation_epoch == 0 and epoch > 0:
compute_validation_map(epoch, iteration, yolact_net, val_dataset, log if args.log else None)
# Compute validation mAP after training is finished
compute_validation_map(epoch, iteration, yolact_net, val_dataset, log if args.log else None)
except KeyboardInterrupt:
if args.interrupt:
print('Stopping early. Saving network...')
# Delete previous copy of the interrupted network so we don't spam the weights folder
SavePath.remove_interrupt(args.save_folder)
yolact_net.save_weights(save_path(epoch, repr(iteration) + '_interrupt'))
exit()
yolact_net.save_weights(save_path(epoch, iteration))
def set_lr(optimizer, new_lr):
for param_group in optimizer.param_groups:
param_group['lr'] = new_lr
global cur_lr
cur_lr = new_lr
def gradinator(x):
x.requires_grad = False
return x
def prepare_data(datum, devices:list=None, allocation:list=None):
with torch.no_grad():
if devices is None:
devices = ['cuda:0'] if args.cuda else ['cpu']
if allocation is None:
allocation = [args.batch_size // len(devices)] * (len(devices) - 1)
allocation.append(args.batch_size - sum(allocation)) # The rest might need more/less
images, (targets, masks, num_crowds) = datum
cur_idx = 0
for device, alloc in zip(devices, allocation):
for _ in range(alloc):
images[cur_idx] = gradinator(images[cur_idx].to(device))
targets[cur_idx] = gradinator(targets[cur_idx].to(device))
masks[cur_idx] = gradinator(masks[cur_idx].to(device))
cur_idx += 1
if cfg.preserve_aspect_ratio:
# Choose a random size from the batch
_, h, w = images[random.randint(0, len(images)-1)].size()
for idx, (image, target, mask, num_crowd) in enumerate(zip(images, targets, masks, num_crowds)):
images[idx], targets[idx], masks[idx], num_crowds[idx] \
= enforce_size(image, target, mask, num_crowd, w, h)
cur_idx = 0
split_images, split_targets, split_masks, split_numcrowds \
= [[None for alloc in allocation] for _ in range(4)]
for device_idx, alloc in enumerate(allocation):
split_images[device_idx] = torch.stack(images[cur_idx:cur_idx+alloc], dim=0)
split_targets[device_idx] = targets[cur_idx:cur_idx+alloc]
split_masks[device_idx] = masks[cur_idx:cur_idx+alloc]
split_numcrowds[device_idx] = num_crowds[cur_idx:cur_idx+alloc]
cur_idx += alloc
return split_images, split_targets, split_masks, split_numcrowds
def no_inf_mean(x:torch.Tensor):
"""
Computes the mean of a vector, throwing out all inf values.
If there are no non-inf values, this will return inf (i.e., just the normal mean).
"""
no_inf = [a for a in x if torch.isfinite(a)]
if len(no_inf) > 0:
return sum(no_inf) / len(no_inf)
else:
return x.mean()
def compute_validation_loss(net, data_loader, criterion):
global loss_types
with torch.no_grad():
losses = {}
# Don't switch to eval mode because we want to get losses
iterations = 0
for datum in data_loader:
images, targets, masks, num_crowds = prepare_data(datum)
out = net(images)
wrapper = ScatterWrapper(targets, masks, num_crowds)
_losses = criterion(out, wrapper, wrapper.make_mask())
for k, v in _losses.items():
v = v.mean().item()
if k in losses:
losses[k] += v
else:
losses[k] = v
iterations += 1
if args.validation_size <= iterations * args.batch_size:
break
for k in losses:
losses[k] /= iterations
loss_labels = sum([[k, losses[k]] for k in loss_types if k in losses], [])
print(('Validation ||' + (' %s: %.3f |' * len(losses)) + ')') % tuple(loss_labels), flush=True)
def compute_validation_map(epoch, iteration, yolact_net, dataset, log:Log=None):
with torch.no_grad():
yolact_net.eval()
start = time.time()
print()
print("Computing validation mAP (this may take a while)...", flush=True)
val_info = eval_script.evaluate(yolact_net, dataset, train_mode=True)
end = time.time()
if log is not None:
log.log('val', val_info, elapsed=(end - start), epoch=epoch, iter=iteration)
yolact_net.train()
def setup_eval():
eval_script.parse_args(['--no_bar', '--max_images='+str(args.validation_size)])
if __name__ == '__main__':
train()