-
Notifications
You must be signed in to change notification settings - Fork 14
/
app.py
515 lines (415 loc) · 16.2 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
'''
author(s): xujing from Medcare
date: 2019-03-20
flask调用opencv并基于yolo-lite做目标检测。
解决了:
在html中嵌入opencv视频流
opencv putText的中文显示
darknet调用yolo-lite
多线程,多点同时访问
ajax异步更新echarts的json数据,实时绘制识别结果!
问题: yolo-lite在no-GPU下的识别FPS没有做到paper中说的那么高!
'''
from flask import Response
from flask import Flask
from flask import render_template
import os
import uuid
import threading
import argparse
from ctypes import *
import math
import random
import numpy as np
import configparser
import imutils
import cv2
from imutils.video import VideoStream
from PIL import Image,ImageDraw,ImageFont
import matplotlib.cm as mpcm
import datetime
import time
from pyecharts.charts import Bar
from pyecharts import options as opts
app = Flask(__name__)
outputFrame = None
temp_str = str(uuid.uuid1())
print(temp_str)
lock = threading.Lock()
config = configparser.ConfigParser()
config.read('config.ini')
if config['IPCapture']['IP'] != 'no':
# vs = VideoStream(src= config['IPCapture']['IP']).start() # ip摄像头
vs = cv2.VideoCapture(config['IPCapture']['IP']) # ip摄像头
elif config['USBCapture']['USB'] != 'no':
# vs = VideoStream(src=0).start() # USB摄像头或采集卡设备
vs = cv2.VideoCapture(0) # USB摄像头或采集卡设备
elif config['PiCamera']['PI'] != 'no':
# vs = VideoStream(usePiCamera=1).start() # 树莓派
vs = cv2.VideoCapture(1) # 树莓派
elif config['VideoPath']['PATH'] != 'no':
# vs = VideoStream(src="test.mp4").start() # 本地视频源
vs = cv2.VideoCapture("test.mp4") # 本地视频源
hasGPU = config['Device']['Device']
label_name = ['aeroplane','bicycle','bird','boat','bottle','bus','car','cat','chair','cow',
'diningtable','dog','horse','motorbike','person','pottedplant','sheep','sofa','train','tvmonitor']
probs = [0.0] * len(label_name)
time.sleep(2.0)
# ---------------------------通过darknet调用yolo-lite--------------------------------
def change_cv2_draw(image,strs,local,sizes,colour):
'''解决openCV putText中文显示问题
'''
cv2img = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
pilimg = Image.fromarray(cv2img)
draw = ImageDraw.Draw(pilimg)
font = ImageFont.truetype("./static/fonts/Microsoft-Yahei-UI-Light.ttc",sizes,encoding='utf-8')
draw.text(local,strs,colour,font=font)
image = cv2.cvtColor(np.array(pilimg),cv2.COLOR_RGB2BGR)
return image
def colors_subselect(colors, num_classes=20):
'''颜色映射
'''
dt = len(colors) // num_classes
sub_colors = []
for i in range(num_classes):
color = colors[i*dt]
if isinstance(color[0], float):
sub_colors.append([int(c * 255) for c in color])
else:
sub_colors.append([c for c in color])
return sub_colors
colors = colors_subselect(mpcm.plasma.colors, num_classes=20)
colors_tableau = [(255, 152, 150),(148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148),
(227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199),
(188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229),
(188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229),
(255, 152, 150),(148, 103, 189), (197, 176, 213)]
# 调用darknet需要的一些方法
def sample(probs):
s = sum(probs)
probs = [a/s for a in probs]
r = random.uniform(0, 1)
for i in range(len(probs)):
r = r - probs[i]
if r <= 0:
return i
return len(probs)-1
def c_array(ctype, values):
arr = (ctype*len(values))()
arr[:] = values
return arr
class BOX(Structure):
_fields_ = [("x", c_float),
("y", c_float),
("w", c_float),
("h", c_float)]
class DETECTION(Structure):
_fields_ = [("bbox", BOX),
("classes", c_int),
("prob", POINTER(c_float)),
("mask", POINTER(c_float)),
("objectness", c_float),
("sort_class", c_int),
("uc", POINTER(c_float))]
class IMAGE(Structure):
_fields_ = [("w", c_int),
("h", c_int),
("c", c_int),
("data", POINTER(c_float))]
class METADATA(Structure):
_fields_ = [("classes", c_int),
("names", POINTER(c_char_p))]
if os.name == "nt":
cwd = os.path.dirname(__file__)
os.environ['PATH'] = cwd + ';' + os.environ['PATH']
if hasGPU == "True":
winGPUdll = os.path.join(cwd, "yolo_cpp_dll.dll") # GPU!
lib = CDLL(winGPUdll, RTLD_GLOBAL)
else:
winNoGPUdll = os.path.join(cwd, "yolo_cpp_dll_no_gpu.dll")
lib = CDLL(winNoGPUdll, RTLD_GLOBAL)
else:
lib = CDLL("./libdarknet.so", RTLD_GLOBAL) # Lunix
lib.network_width.argtypes = [c_void_p]
lib.network_width.restype = c_int
lib.network_height.argtypes = [c_void_p]
lib.network_height.restype = c_int
copy_image_from_bytes = lib.copy_image_from_bytes
copy_image_from_bytes.argtypes = [IMAGE,c_char_p]
def network_width(net):
return lib.network_width(net)
def network_height(net):
return lib.network_height(net)
predict = lib.network_predict_ptr
predict.argtypes = [c_void_p, POINTER(c_float)]
predict.restype = POINTER(c_float)
if hasGPU:
set_gpu = lib.cuda_set_device
set_gpu.argtypes = [c_int]
make_image = lib.make_image
make_image.argtypes = [c_int, c_int, c_int]
make_image.restype = IMAGE
get_network_boxes = lib.get_network_boxes
get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int), c_int]
get_network_boxes.restype = POINTER(DETECTION)
make_network_boxes = lib.make_network_boxes
make_network_boxes.argtypes = [c_void_p]
make_network_boxes.restype = POINTER(DETECTION)
free_detections = lib.free_detections
free_detections.argtypes = [POINTER(DETECTION), c_int]
free_ptrs = lib.free_ptrs
free_ptrs.argtypes = [POINTER(c_void_p), c_int]
network_predict = lib.network_predict_ptr
network_predict.argtypes = [c_void_p, POINTER(c_float)]
reset_rnn = lib.reset_rnn
reset_rnn.argtypes = [c_void_p]
load_net = lib.load_network
load_net.argtypes = [c_char_p, c_char_p, c_int]
load_net.restype = c_void_p
load_net_custom = lib.load_network_custom
load_net_custom.argtypes = [c_char_p, c_char_p, c_int, c_int]
load_net_custom.restype = c_void_p
do_nms_obj = lib.do_nms_obj
do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
do_nms_sort = lib.do_nms_sort
do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
free_image = lib.free_image
free_image.argtypes = [IMAGE]
letterbox_image = lib.letterbox_image
letterbox_image.argtypes = [IMAGE, c_int, c_int]
letterbox_image.restype = IMAGE
load_meta = lib.get_metadata
lib.get_metadata.argtypes = [c_char_p]
lib.get_metadata.restype = METADATA
load_image = lib.load_image_color
load_image.argtypes = [c_char_p, c_int, c_int]
load_image.restype = IMAGE
rgbgr_image = lib.rgbgr_image
rgbgr_image.argtypes = [IMAGE]
predict_image = lib.network_predict_image
predict_image.argtypes = [c_void_p, IMAGE]
predict_image.restype = POINTER(c_float)
predict_image_letterbox = lib.network_predict_image_letterbox
predict_image_letterbox.argtypes = [c_void_p, IMAGE]
predict_image_letterbox.restype = POINTER(c_float)
def array_to_image(arr):
import numpy as np
# need to return old values to avoid python freeing memory
arr = arr.transpose(2,0,1)
c = arr.shape[0]
h = arr.shape[1]
w = arr.shape[2]
arr = np.ascontiguousarray(arr.flat, dtype=np.float32) / 255.0
data = arr.ctypes.data_as(POINTER(c_float))
im = IMAGE(w,h,c,data)
return im, arr
def classify(net, meta, im):
out = predict_image(net, im)
res = []
for i in range(meta.classes):
if altNames is None:
nameTag = meta.names[i]
else:
nameTag = altNames[i]
res.append((nameTag, out[i]))
res = sorted(res, key=lambda x: -x[1])
return res
def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45, debug= False):
"""
Performs the meat of the detection
"""
im = load_image(image, 0, 0)
if debug: print("Loaded image")
ret = detect_image(net, meta, im, thresh, hier_thresh, nms, debug)
free_image(im)
if debug: print("freed image")
return ret
def detect_image(net, meta, im, thresh=.5, hier_thresh=.5, nms=.45, debug= False):
num = c_int(0)
if debug: print("Assigned num")
pnum = pointer(num)
if debug: print("Assigned pnum")
predict_image(net, im)
letter_box = 0
#predict_image_letterbox(net, im)
#letter_box = 1
if debug: print("did prediction")
#dets = get_network_boxes(net, custom_image_bgr.shape[1], custom_image_bgr.shape[0], thresh, hier_thresh, None, 0, pnum, letter_box) # OpenCV
dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum, letter_box)
if debug: print("Got dets")
num = pnum[0]
if debug: print("got zeroth index of pnum")
if nms:
do_nms_sort(dets, num, meta.classes, nms)
if debug: print("did sort")
res = []
if debug: print("about to range")
for j in range(num):
if debug: print("Ranging on "+str(j)+" of "+str(num))
if debug: print("Classes: "+str(meta), meta.classes, meta.names)
for i in range(meta.classes):
if debug: print("Class-ranging on "+str(i)+" of "+str(meta.classes)+"= "+str(dets[j].prob[i]))
if dets[j].prob[i] > 0:
b = dets[j].bbox
if altNames is None:
nameTag = meta.names[i]
else:
nameTag = altNames[i]
if debug:
print("Got bbox", b)
print(nameTag)
print(dets[j].prob[i])
print((b.x, b.y, b.w, b.h))
res.append((nameTag, dets[j].prob[i], (b.x, b.y, b.w, b.h)))
if debug: print("did range")
res = sorted(res, key=lambda x: -x[1])
if debug: print("did sort")
free_detections(dets, num)
if debug: print("freed detections")
return res
netMain = None
metaMain = None
altNames = None
def performDetect(imagePath="test.jpg", thresh=0.5, configPath="./model/tiny-yolov2-trial13-noBatch.cfg", weightPath="./model/tiny-yolov2-trial13_noBatch.weights", metaPath="./model/voc.data", showImage=True, makeImageOnly=False, initOnly=False):
global metaMain, netMain, altNames #pylint: disable=W0603
assert 0 < thresh < 1, "Threshold should be a float between zero and one (non-inclusive)"
if not os.path.exists(configPath):
raise ValueError("Invalid config path `"+os.path.abspath(configPath)+"`")
if not os.path.exists(weightPath):
raise ValueError("Invalid weight path `"+os.path.abspath(weightPath)+"`")
if not os.path.exists(metaPath):
raise ValueError("Invalid data file path `"+os.path.abspath(metaPath)+"`")
if netMain is None:
netMain = load_net_custom(configPath.encode("ascii"), weightPath.encode("ascii"), 0, 1) # batch size = 1
if metaMain is None:
metaMain = load_meta(metaPath.encode("ascii"))
if altNames is None:
# In Python 3, the metafile default access craps out on Windows (but not Linux)
# Read the names file and create a list to feed to detect
try:
with open(metaPath) as metaFH:
metaContents = metaFH.read()
import re
match = re.search("names *= *(.*)$", metaContents, re.IGNORECASE | re.MULTILINE)
if match:
result = match.group(1)
else:
result = None
try:
if os.path.exists(result):
with open(result) as namesFH:
namesList = namesFH.read().strip().split("\n")
altNames = [x.strip() for x in namesList]
except TypeError:
pass
except Exception:
pass
if initOnly:
print("Initialized detector")
return None
if not os.path.exists(imagePath):
raise ValueError("Invalid image path `"+os.path.abspath(imagePath)+"`")
# Do the detection
#detections = detect(netMain, metaMain, imagePath, thresh) # if is used cv2.imread(image)
detections = detect(netMain, metaMain, imagePath.encode("ascii"), thresh)
if showImage:
try:
scale = 0.4
text_thickness = 1
line_type = 8
thickness=2
image = cv2.imread(imagePath)
print("*** "+str(len(detections))+" Results, color coded by confidence ***")
imcaption = []
img_prob = [0.0]*len(label_name)
for detection in detections:
label = detection[0]
confidence = detection[1]
pstring = label+": "+str(np.rint(100 * confidence))+"%"
img_prob[label_name.index(label)] = np.rint(100 * confidence)
imcaption.append(pstring)
print(pstring)
bounds = detection[2]
shape = image.shape
yExtent = int(bounds[3])
xEntent = int(bounds[2])
# Coordinates are around the center
xCoord = int(bounds[0] - bounds[2]/2)
yCoord = int(bounds[1] - bounds[3]/2)
color = colors_tableau[label_name.index(detection[0])]
p1 = (xCoord, yCoord)
p2 = (xCoord + xEntent,yCoord + yExtent)
if (p2[0] - p1[0] < 1) or (p2[1] - p1[1] < 1):
continue
cv2.rectangle(image, p1, p2, color, thickness)
text_size, baseline = cv2.getTextSize(pstring, cv2.FONT_HERSHEY_SIMPLEX, scale, text_thickness)
cv2.rectangle(image, (p1[0], p1[1] - thickness*10 - baseline), (p1[0] + 2*(text_size[0]-20), p1[1]), color, -1)
image = change_cv2_draw(image,pstring,(p1[0],p1[1]-7*baseline),20,(255,255,255))
except Exception as e:
print("Unable to show image: "+str(e))
return image, img_prob
#--------------------------falsk调用OpenCV和YOLO-lite------------------------------------
# index视图函数
@app.route("/", methods=['GET'])
def index():
return render_template("index.html")
def detect_yolo_lite():
'''
调用yolo-lite
'''
global vs, outputFrame, lock, probs
total = 0
while True:
ret,frame = vs.read()
total += 1
# frame = imutils.resize(frame, width=400)
# if total/10 == 0:
save_path = "./static/images/"+ temp_str + ".jpg"
cv2.imwrite(save_path,frame)
frame, probs = performDetect(imagePath=save_path)
# print(frame)
with lock: # 多线程的线程锁,确保当前线程的数据不被其他线程修改!
outputFrame = frame
def generate():
'''构建生成器
'''
global outputFrame, lock
while True:
with lock:
if outputFrame is None:
continue
(flag,encodedImage) = cv2.imencode(".jpg",outputFrame)
if not flag:
continue
yield(b"--frame\r\n" b"Content-Type:image/jpeg\r\n\r\n"+bytearray(encodedImage)+b"\r\n")
# 显示帧
@app.route("/video_feed")
def video_feed():
return Response(generate(),mimetype='multipart/x-mixed-replace;boundary=frame')
# ajax异步更新echarts数据
@app.route("/get_bar")
def get_bar():
global probs
bar = (
Bar()
.add_xaxis(label_name)
.add_yaxis("Detection Probs",probs)
)
# print(bar.render_embed())
# print(bar.dump_options())
# return render_template("index.html",bar_data=bar.dump_options())
# return bar.dump_options_with_quotes()
return bar.dump_options()
if __name__ == "__main__":
ap = argparse.ArgumentParser()
ap.add_argument("-i","--ip",type=str,required=True,help="IP")
ap.add_argument("-o","--port",type=int,required=True,help="port")
args = vars(ap.parse_args())
# 多线程
t = threading.Thread(target=detect_yolo_lite)
t.daemon = True
t.start()
app.run(host=args["ip"],port=args["port"],debug=True,threaded=True,
use_reloader=False)
#release视频流
vs.stop()