forked from kohya-ss/sd-scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fine_tune.py
440 lines (362 loc) · 18.9 KB
/
fine_tune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
# training with captions
# XXX dropped option: hypernetwork training
import argparse
import gc
import math
import os
import toml
from multiprocessing import Value
from tqdm import tqdm
import torch
from accelerate.utils import set_seed
import diffusers
from diffusers import DDPMScheduler
import library.train_util as train_util
import library.config_util as config_util
from library.config_util import (
ConfigSanitizer,
BlueprintGenerator,
)
import library.custom_train_functions as custom_train_functions
from library.custom_train_functions import apply_snr_weight, get_weighted_text_embeddings
def train(args):
train_util.verify_training_args(args)
train_util.prepare_dataset_args(args, True)
cache_latents = args.cache_latents
if args.seed is not None:
set_seed(args.seed) # 乱数系列を初期化する
tokenizer = train_util.load_tokenizer(args)
blueprint_generator = BlueprintGenerator(ConfigSanitizer(False, True, True))
if args.dataset_config is not None:
print(f"Load dataset config from {args.dataset_config}")
user_config = config_util.load_user_config(args.dataset_config)
ignored = ["train_data_dir", "in_json"]
if any(getattr(args, attr) is not None for attr in ignored):
print(
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
", ".join(ignored)
)
)
else:
user_config = {
"datasets": [
{
"subsets": [
{
"image_dir": args.train_data_dir,
"metadata_file": args.in_json,
}
]
}
]
}
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
current_epoch = Value("i", 0)
current_step = Value("i", 0)
ds_for_collater = train_dataset_group if args.max_data_loader_n_workers == 0 else None
collater = train_util.collater_class(current_epoch, current_step, ds_for_collater)
if args.debug_dataset:
train_util.debug_dataset(train_dataset_group)
return
if len(train_dataset_group) == 0:
print(
"No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。"
)
return
if cache_latents:
assert (
train_dataset_group.is_latent_cacheable()
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
# acceleratorを準備する
print("prepare accelerator")
accelerator, unwrap_model = train_util.prepare_accelerator(args)
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype, save_dtype = train_util.prepare_dtype(args)
# モデルを読み込む
text_encoder, vae, unet, load_stable_diffusion_format = train_util.load_target_model(args, weight_dtype)
# verify load/save model formats
if load_stable_diffusion_format:
src_stable_diffusion_ckpt = args.pretrained_model_name_or_path
src_diffusers_model_path = None
else:
src_stable_diffusion_ckpt = None
src_diffusers_model_path = args.pretrained_model_name_or_path
if args.save_model_as is None:
save_stable_diffusion_format = load_stable_diffusion_format
use_safetensors = args.use_safetensors
else:
save_stable_diffusion_format = args.save_model_as.lower() == "ckpt" or args.save_model_as.lower() == "safetensors"
use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower())
# Diffusers版のxformers使用フラグを設定する関数
def set_diffusers_xformers_flag(model, valid):
# model.set_use_memory_efficient_attention_xformers(valid) # 次のリリースでなくなりそう
# pipeが自動で再帰的にset_use_memory_efficient_attention_xformersを探すんだって(;´Д`)
# U-Netだけ使う時にはどうすればいいのか……仕方ないからコピって使うか
# 0.10.2でなんか巻き戻って個別に指定するようになった(;^ω^)
# Recursively walk through all the children.
# Any children which exposes the set_use_memory_efficient_attention_xformers method
# gets the message
def fn_recursive_set_mem_eff(module: torch.nn.Module):
if hasattr(module, "set_use_memory_efficient_attention_xformers"):
module.set_use_memory_efficient_attention_xformers(valid)
for child in module.children():
fn_recursive_set_mem_eff(child)
fn_recursive_set_mem_eff(model)
# モデルに xformers とか memory efficient attention を組み込む
if args.diffusers_xformers:
print("Use xformers by Diffusers")
set_diffusers_xformers_flag(unet, True)
else:
# Windows版のxformersはfloatで学習できないのでxformersを使わない設定も可能にしておく必要がある
print("Disable Diffusers' xformers")
set_diffusers_xformers_flag(unet, False)
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
# 学習を準備する
if cache_latents:
vae.to(accelerator.device, dtype=weight_dtype)
vae.requires_grad_(False)
vae.eval()
with torch.no_grad():
train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process)
vae.to("cpu")
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
accelerator.wait_for_everyone()
# 学習を準備する:モデルを適切な状態にする
training_models = []
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
training_models.append(unet)
if args.train_text_encoder:
print("enable text encoder training")
if args.gradient_checkpointing:
text_encoder.gradient_checkpointing_enable()
training_models.append(text_encoder)
else:
text_encoder.to(accelerator.device, dtype=weight_dtype)
text_encoder.requires_grad_(False) # text encoderは学習しない
if args.gradient_checkpointing:
text_encoder.gradient_checkpointing_enable()
text_encoder.train() # required for gradient_checkpointing
else:
text_encoder.eval()
if not cache_latents:
vae.requires_grad_(False)
vae.eval()
vae.to(accelerator.device, dtype=weight_dtype)
for m in training_models:
m.requires_grad_(True)
params = []
for m in training_models:
params.extend(m.parameters())
params_to_optimize = params
# 学習に必要なクラスを準備する
print("prepare optimizer, data loader etc.")
_, _, optimizer = train_util.get_optimizer(args, trainable_params=params_to_optimize)
# dataloaderを準備する
# DataLoaderのプロセス数:0はメインプロセスになる
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) # cpu_count-1 ただし最大で指定された数まで
train_dataloader = torch.utils.data.DataLoader(
train_dataset_group,
batch_size=1,
shuffle=True,
collate_fn=collater,
num_workers=n_workers,
persistent_workers=args.persistent_data_loader_workers,
)
# 学習ステップ数を計算する
if args.max_train_epochs is not None:
args.max_train_steps = args.max_train_epochs * math.ceil(
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
)
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
# データセット側にも学習ステップを送信
train_dataset_group.set_max_train_steps(args.max_train_steps)
# lr schedulerを用意する
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
# 実験的機能:勾配も含めたfp16学習を行う モデル全体をfp16にする
if args.full_fp16:
assert (
args.mixed_precision == "fp16"
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
print("enable full fp16 training.")
unet.to(weight_dtype)
text_encoder.to(weight_dtype)
# acceleratorがなんかよろしくやってくれるらしい
if args.train_text_encoder:
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
)
else:
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler)
# 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
if args.full_fp16:
train_util.patch_accelerator_for_fp16_training(accelerator)
# resumeする
train_util.resume_from_local_or_hf_if_specified(accelerator, args)
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
# 学習する
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
print("running training / 学習開始")
print(f" num examples / サンプル数: {train_dataset_group.num_train_images}")
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
print(f" num epochs / epoch数: {num_train_epochs}")
print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
global_step = 0
noise_scheduler = DDPMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
)
if accelerator.is_main_process:
accelerator.init_trackers("finetuning" if args.log_tracker_name is None else args.log_tracker_name)
for epoch in range(num_train_epochs):
print(f"epoch {epoch+1}/{num_train_epochs}")
current_epoch.value = epoch + 1
for m in training_models:
m.train()
loss_total = 0
for step, batch in enumerate(train_dataloader):
current_step.value = global_step
with accelerator.accumulate(training_models[0]): # 複数モデルに対応していない模様だがとりあえずこうしておく
with torch.no_grad():
if "latents" in batch and batch["latents"] is not None:
latents = batch["latents"].to(accelerator.device) # .to(dtype=weight_dtype)
else:
# latentに変換
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * 0.18215
b_size = latents.shape[0]
with torch.set_grad_enabled(args.train_text_encoder):
# Get the text embedding for conditioning
if args.weighted_captions:
encoder_hidden_states = get_weighted_text_embeddings(tokenizer,
text_encoder,
batch["captions"],
accelerator.device,
args.max_token_length // 75 if args.max_token_length else 1,
clip_skip=args.clip_skip,
)
else:
input_ids = batch["input_ids"].to(accelerator.device)
encoder_hidden_states = train_util.get_hidden_states(
args, input_ids, tokenizer, text_encoder, None if not args.full_fp16 else weight_dtype
)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents, device=latents.device)
if args.noise_offset:
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
noise += args.noise_offset * torch.randn((latents.shape[0], latents.shape[1], 1, 1), device=latents.device)
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Predict the noise residual
with accelerator.autocast():
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
if args.v_parameterization:
# v-parameterization training
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
target = noise
if args.min_snr_gamma:
# do not mean over batch dimension for snr weight
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
loss = loss.mean([1, 2, 3])
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
loss = loss.mean() # mean over batch dimension
else:
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="mean")
accelerator.backward(loss)
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
params_to_clip = []
for m in training_models:
params_to_clip.extend(m.parameters())
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
train_util.sample_images(
accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet
)
current_loss = loss.detach().item() # 平均なのでbatch sizeは関係ないはず
if args.logging_dir is not None:
logs = {"loss": current_loss, "lr": float(lr_scheduler.get_last_lr()[0])}
if args.optimizer_type.lower() == "DAdaptation".lower(): # tracking d*lr value
logs["lr/d*lr"] = (
lr_scheduler.optimizers[0].param_groups[0]["d"] * lr_scheduler.optimizers[0].param_groups[0]["lr"]
)
accelerator.log(logs, step=global_step)
# TODO moving averageにする
loss_total += current_loss
avr_loss = loss_total / (step + 1)
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= args.max_train_steps:
break
if args.logging_dir is not None:
logs = {"loss/epoch": loss_total / len(train_dataloader)}
accelerator.log(logs, step=epoch + 1)
accelerator.wait_for_everyone()
if args.save_every_n_epochs is not None:
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
train_util.save_sd_model_on_epoch_end(
args,
accelerator,
src_path,
save_stable_diffusion_format,
use_safetensors,
save_dtype,
epoch,
num_train_epochs,
global_step,
unwrap_model(text_encoder),
unwrap_model(unet),
vae,
)
train_util.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet)
is_main_process = accelerator.is_main_process
if is_main_process:
unet = unwrap_model(unet)
text_encoder = unwrap_model(text_encoder)
accelerator.end_training()
if args.save_state:
train_util.save_state_on_train_end(args, accelerator)
del accelerator # この後メモリを使うのでこれは消す
if is_main_process:
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
train_util.save_sd_model_on_train_end(
args, src_path, save_stable_diffusion_format, use_safetensors, save_dtype, epoch, global_step, text_encoder, unet, vae
)
print("model saved.")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
train_util.add_sd_models_arguments(parser)
train_util.add_dataset_arguments(parser, False, True, True)
train_util.add_training_arguments(parser, False)
train_util.add_sd_saving_arguments(parser)
train_util.add_optimizer_arguments(parser)
config_util.add_config_arguments(parser)
custom_train_functions.add_custom_train_arguments(parser)
parser.add_argument("--diffusers_xformers", action="store_true", help="use xformers by diffusers / Diffusersでxformersを使用する")
parser.add_argument("--train_text_encoder", action="store_true", help="train text encoder / text encoderも学習する")
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
args = train_util.read_config_from_file(args, parser)
train(args)