From ebfa79ae0f48b7ff1294e43ec3f5861f38c52878 Mon Sep 17 00:00:00 2001 From: Eric Morganson Date: Fri, 24 Jun 2016 02:53:01 +0000 Subject: [PATCH] Updating fix_columns.py --- python/pixcorrect/fix_columns.py | 52 +++++++++++++++++++------------- 1 file changed, 31 insertions(+), 21 deletions(-) diff --git a/python/pixcorrect/fix_columns.py b/python/pixcorrect/fix_columns.py index e4a1b28..863c16e 100644 --- a/python/pixcorrect/fix_columns.py +++ b/python/pixcorrect/fix_columns.py @@ -18,7 +18,6 @@ from pixcorrect.corr_util import logger, do_once, items_must_match from despyfits.DESImage import DESDataImage, DESImage, DESBPMImage from pixcorrect.PixCorrectDriver import PixCorrectImStep -#from pixcorrect.clippedMean import clippedMean from despyfits import maskbits # Which section of the config file to read for this step @@ -38,14 +37,15 @@ class FixColumns(PixCorrectImStep): step_name = config_section # BPM flag for correctable pixels CORR = maskbits.BPMDEF_CORR - # These BPM flags may be present for correctable pixels - BPMOK = CORR | maskbits.BPMDEF_BIAS_COL | maskbits.BPMDEF_FUNKY_COL | maskbits.BPMDEF_SUSPECT - BPMOK |= maskbits.BPMDEF_NEAREDGE - # These image mask flags indicate bad pixels in the reference columns - #REJECT = maskbits.BADPIX_BPM + \ - # maskbits.BADPIX_SATURATE +\ - # maskbits.BADPIX_BADAMP + \ - # maskbits.BADPIX_SUSPECT # bitmask for comparison pixels + # These BPM flags define pixels that are not correctable + BPMBAD = maskbits.BPMDEF_FLAT_MIN | \ + maskbits.BPMDEF_FLAT_MAX | \ + maskbits.BPMDEF_FLAT_MASK | \ + maskbits.BPMDEF_BIAS_HOT | \ + maskbits.BPMDEF_BIAS_WARM | \ + maskbits.BPMDEF_BIAS_MASK | \ + maskbits.BPMDEF_WACKY_PIX + MINIMUM_PIXELS = 100 # Smallest number of pixels in column to correct CLIP_SIGMA = 4 # Rejection threshold for mean statistics @@ -100,7 +100,8 @@ def _valid_pix(cls, image, bpm, icol): """ Return boolean array saying which pixels in column icol are useful for sky stats """ - use = (bpm.mask[:,icol] & ~maskbits.BADPIX_NEAREDGE) == 0 + #Allow NEAREDGE columns for reference + use = (image.mask[:,icol] & ~maskbits.BADPIX_NEAREDGE)==0 use &= ~np.isinf(image.data[:,icol]) use &= ~np.isnan(image.data[:,icol]) return use @@ -124,8 +125,8 @@ def __call__(cls, image, bpm): #Change VAR_TOLERANCE from 0.5 to 0.25 #Remove lower limit on correction #Change mask bit usage - # -- correct all correctable pixels, but use only "good" pixels to compute correction - + #Correct all correctable pixels, but use only "good" pixels to compute correction + logger.info('Fixing columns') NEIGHBORS = 6 # Number of comparison columns to seek @@ -133,6 +134,12 @@ def __call__(cls, image, bpm): # Largest allowable fractional difference in variance between the fixable column # and its neighbors: VAR_TOLERANCE = 0.25 + #We require the number of sky pixels in the target column to be not less than this + #fraction of the average number of sky pixels in the reference columns + #If the pixel values of a column vary in a bi-stable way, the high pixels may be + #interpreted as "objects" and the high variance may not be noticed. + COUNT_TOL = 0.80 + if image.mask is None: raise FixColumnsError('Input image does not have mask') @@ -160,12 +167,10 @@ def __call__(cls, image, bpm): # Also, we do not use any bad pixels. coldata = image.data[:,icol] colbpm = bpm.mask[:,icol] - #Pixels that can't be corrected - ignore = np.logical_or(colbpm & ~cls.BPMOK, np.isinf(coldata)) + ignore = np.logical_or(colbpm & cls.BPMBAD, np.isinf(coldata)) ignore |= np.isnan(coldata) corr_rows = np.logical_and(colbpm & cls.CORR, ~ignore) - #Additional pixels that are not used to compute the average - ignore |= image.mask[:,icol] & ~(maskbits.BADPIX_BPM | maskbits.BADPIX_NEAREDGE) + ignore |= image.mask[:,icol] & ~maskbits.BADPIX_BPM use_rows = np.logical_and(colbpm & cls.CORR, ~ignore) if np.count_nonzero(use_rows) < cls.MINIMUM_PIXELS: @@ -173,14 +178,13 @@ def __call__(cls, image, bpm): continue # Get a robust estimate of mean level and slope in target column - #col_mean, col_var, col_n = clippedMean(coldata[use_rows], cls.CLIP_SIGMA) y = colord[use_rows] z = coldata[use_rows] col_mean, col_slope, col_var, col_n = cls._clippedLine(y,z,doslope,cls.CLIP_SIGMA) if col_var <= 0.0: logger.info("Error in clipped line fit for column {:d}".format(icol)) continue - + # Now want to collect stats on up to NEIGHBORS nearby columns norm_stats = [] ilow = icol @@ -202,7 +206,6 @@ def __call__(cls, image, bpm): ref_col,ref_slope,ref_var, ref_n = cls._clippedLine(y,z,doslope,cls.CLIP_SIGMA) if ref_var<=0.0: continue norm_stats.append([ref_col,ref_slope,ref_var,ref_n]) - #norm_stats.append(clippedMean(image.data[:,ilow][use],cls.CLIP_SIGMA)) break while ihigh VAR_TOLERANCE * norm_var: - logger.info('Too much variance to fix col {:d}'.format(icol)) + logger.info('Too much variance to fix column {:d}'.format(icol)) + continue + #Check that number of target column sky pixels is not much less than + #the average of the reference columns + norm_n = np.sum(nc)/np.size(nc) + if col_n < COUNT_TOL*norm_n: + logger.info('Too few sky pixels to fix column {:d}'.format(icol)) continue + #Valid correction. Calculate correction & error estimate norm_mean = np.sum(mean*wt)/np.sum(wt) correction = norm_mean - col_mean correction_var = 1./np.sum(wt) + col_var/col_n