-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
507 lines (458 loc) · 24.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
from flask import Flask, request
from geopy.geocoders import Nominatim
import pickle as pkl
app = Flask(__name__)
from flask import render_template
import pandas as pd
from random import randint
import numpy as np
from string import punctuation
from nltk import word_tokenize, sent_tokenize
from nltk.corpus import stopwords
from nltk.stem import LancasterStemmer, WordNetLemmatizer
import re, string, unicodedata
import inflect
@app.route('/index/')
@app.route('/')
def index():
return render_template('index.html')
@app.route('/predict/')
def predict():
amenities = {'High chair',
'Smartlock', 'Fireplace guards', 'Heating',
'Cleaning before checkout', 'Smoke detector', 'Lockbox',
'Refrigerator', 'Hot water', 'Dryer', 'Self Check-In',
'Smoking allowed', 'Stove', 'Bed linens', 'Microwave', 'Crib',
'Washer / Dryer', 'Air conditioning', 'Fire extinguisher',
'Coffee maker', 'Ethernet connection', 'Accessible-height bed',
'Keypad', '24-hour check-in', 'Baby monitor',
'Laptop friendly workspace', 'Breakfast', 'Family/kid friendly',
'Free parking on street', 'Doorman', 'Carbon monoxide detector',
'Gym', 'Firm matress', 'First aid kit', 'Baby bath',
"Children’s dinnerware", 'Private entrance',
'Dishes and silverware', 'Game console', 'Step-free access',
'Hair dryer', 'Lock on bedroom door', 'Shampoo', 'Window guards',
'Bathtub', 'Pool', 'Babysitter recommendations',
'Private bathroom', 'Buzzer/wireless intercom',
'Wireless Internet', 'Extra pillows and blankets',
'Elevator in building', 'Accessible-height toilet', 'Dog(s)',
"Pack ’n Play/travel crib", 'Outlet covers', 'Washer', 'Hot tub',
'Wheelchair accessible', 'Dishwasher', 'Changing table',
'Free parking on premises', 'Long term stays allowed',
'Room-darkening shades', 'Cooking basics', 'Cable TV',
'translation missing: en.hosting_amenity_49', 'Iron',
'Patio or balcony', 'Wide clearance to bed',
'Flat smooth pathway to front door', 'Kitchen', 'Wide doorway',
'Doorman Entry', 'Wide hallway clearance', 'Stair gates',
'Garden or backyard', 'Pets live on this property', 'Safety card',
'Suitable for events', 'Grab-rails for shower and toilet',
'Path to entrance lit at night', 'BBQ grill', 'Cat(s)',
'Table corner guards', 'Essentials', 'Indoor fireplace',
'translation missing: en.hosting_amenity_50',
'Private living room', 'Internet', 'Luggage dropoff allowed',
'Other pet(s)', 'Oven', 'TV',
'Wide clearance to shower and toilet', 'Beach essentials',
'Hangers', 'Pets allowed', "Children’s books and toys"}
amenities = sorted([amenity.title() for amenity in amenities if 'translation' not in amenity])
cancellation_policy_types = sorted(['moderate', 'flexible', 'strict', 'no_refunds', 'super_strict_30',
'long_term'])
bed_types = sorted(['Real Bed', 'Airbed', 'Futon', 'Pull-out Sofa', 'Couch'])
property_types = sorted(['House', 'Apartment', 'Loft', 'Dorm', 'Condominium',
'Bed & Breakfast', 'Other', 'Townhouse', 'Guesthouse', 'Boat',
'Hostel', 'Bungalow', 'Timeshare', 'Boutique hotel', 'Guest suite',
'Tent', 'In-law', 'Serviced apartment', 'Villa', 'Cabin',
'Earth House', 'Cave', 'Castle', 'Lighthouse', 'Hut',
'Vacation home', 'Chalet'])
room_types = sorted(['Private room', 'Entire home/apt', 'Shared room'])
return render_template('predict.html', amenities=amenities, cancellation_policy_types=cancellation_policy_types,
bed_types=bed_types, property_types=property_types, room_types=room_types)
@app.route("/process_form", methods=['POST'])
def process_form():
venues = pd.read_csv("venues_new.csv")
venue_types = ['courthouse', 'stadium', 'natural_feature', 'hospital', 'atm',
'cafe', 'store', 'jewelry_store', 'laundry', 'furniture_store',
'hindu_temple', 'aquarium', 'general_contractor', 'synagogue',
'bicycle_store', 'car_wash', 'car_dealer', 'florist',
'establishment', 'airport', 'beauty_salon', 'bakery', 'hair_care',
'movie_theater', 'locksmith', 'home_goods_store', 'moving_company',
'place_of_worship', 'plumber', 'meal_takeaway', 'health',
'roofing_contractor', 'local_government_office', 'physiotherapist',
'movie_rental', 'electrician', 'mosque', 'gas_station', 'spa',
'school', 'political', 'bar', 'electronics_store', 'night_club',
'library', 'point_of_interest', 'funeral_home', 'fire_station',
'taxi_stand', 'shoe_store', 'park', 'premise', 'pharmacy',
'amusement_park', 'light_rail_station', 'post_office', 'bank',
'convenience_store', 'rv_park', 'neighborhood', 'clothing_store',
'art_gallery', 'accounting', 'police', 'doctor', 'painter',
'university', 'restaurant', 'lodging', 'finance', 'meal_delivery',
'casino', 'car_repair', 'zoo', 'cemetery',
'grocery_or_supermarket', 'parking', 'embassy', 'museum',
'insurance_agency', 'campground', 'storage', 'department_store',
'book_store', 'hardware_store', 'subway_station',
'real_estate_agency', 'transit_station', 'train_station',
'subpremise', 'bowling_alley', 'gym', 'pet_store',
'veterinary_care', 'dentist', 'food', 'bus_station', 'car_rental',
'travel_agency', 'shopping_mall', 'lawyer', 'church',
'liquor_store']
for row in venues['types']:
venue_types += [venue_type.replace("'", '') for venue_type in row[2:-2].split(', ')]
venue_types = list(set(venue_types))
def get_amenities(long_, lat, max_distance):
venues_ = venues.copy()
delta = 0.00098621649 * 180 * max_distance / np.pi
venues_ = venues_[venues_['longitude'] < long_ + delta]
venues_ = venues_[venues_['longitude'] > long_ - delta]
venues_ = venues_[venues_['latitude'] < lat + delta]
venues_ = venues_[venues_['latitude'] > lat - delta]
return venues_[venue_types].sum()
data = {}
data['name'] = request.form.get("name")
data['accommodates'] = request.form.get("accommodates") # Need to add
data['bathrooms'] = request.form.get("bathrooms")
data['bedrooms'] = request.form.get("bedrooms")
for bed_type in ['Real Bed', 'Airbed', 'Futon', 'Pull-out Sofa', 'Couch']:
if bed_type == request.form.get('bed_type'):
data["bed_type_" + bed_type] = 1
else:
data["bed_type_" + bed_type] = 0
data['beds'] = request.form.get("beds")
for cancellation_policy in ['moderate', 'flexible', 'strict', 'no_refunds', 'super_strict_30',
'long_term']:
if cancellation_policy == request.form.get("cancellation_policy"):
data["cancellation_policy_" + cancellation_policy] = 1
else:
data["cancellation_policy_" + cancellation_policy] = 0
data['city'] = str(request.form.get("city")) # Need to add
data['instant_bookable'] = False
data['latitude'] = str(request.form.get("latitude"))
data['longitude'] = str(request.form.get("longitude"))
print(data['latitude'], data['longitude'])
geolocator = Nominatim(user_agent="specify_your_app_name_here")
location = geolocator.reverse(data['latitude'] + ", " + data['longitude'])
print(location)
zipcode_str = location.address
zipcode_str = zipcode_str[-31:-26]
data['metropolitan'] = str(request.form.get("metropolitan"))
for property_type in ['House', 'Apartment', 'Loft', 'Dorm', 'Condominium',
'Bed & Breakfast', 'Other', 'Townhouse', 'Guesthouse', 'Boat',
'Hostel', 'Bungalow', 'Timeshare', 'Boutique hotel', 'Guest suite',
'Tent', 'In-law', 'Serviced apartment', 'Villa', 'Cabin',
'Earth House', 'Cave', 'Castle', 'Lighthouse', 'Hut',
'Vacation home', 'Chalet']:
if property_type == request.form.get("property_type"):
data["property_type_" + property_type] = 1
else:
data["property_type_" + property_type] = 0
for room_type in ['Private room', 'Entire home/apt', 'Shared room']:
if room_type == request.form.get("room_type"):
data["room_type_" + room_type] = 1
else:
data["room_type_" + room_type] = 0
data['zipcode'] = int(zipcode_str)
data['discount'] = request.form.get("discount")
data['state'] = 'NA'
amenities = {'24-hour check-in',
'Accessible-height bed',
'Accessible-height toilet',
'Air conditioning',
'BBQ grill',
'Baby bath',
'Baby monitor',
'Babysitter recommendations',
'Bathtub',
'Beach essentials',
'Bed linens',
'Breakfast',
'Buzzer/wireless intercom',
'Cable TV',
'Carbon monoxide detector',
'Cat(s)',
'Changing table',
"Children’s books and toys",
"Children’s dinnerware",
'Cleaning before checkout',
'Coffee maker',
'Cooking basics',
'Crib',
'Dishes and silverware',
'Dishwasher',
'Dog(s)',
'Doorman',
'Doorman Entry',
'Dryer',
'Elevator in building',
'Essentials',
'Ethernet connection',
'Extra pillows and blankets',
'Family/kid friendly',
'Fire extinguisher',
'Fireplace guards',
'Firm matress',
'First aid kit',
'Flat smooth pathway to front door',
'Free parking on premises',
'Free parking on street',
'Game console',
'Garden or backyard',
'Grab-rails for shower and toilet',
'Gym',
'Hair dryer',
'Hangers',
'Heating',
'High chair',
'Hot tub',
'Hot water',
'Indoor fireplace',
'Internet',
'Iron',
'Keypad',
'Kitchen',
'Laptop friendly workspace',
'Lock on bedroom door',
'Lockbox',
'Long term stays allowed',
'Luggage dropoff allowed',
'Microwave',
'Other pet(s)',
'Outlet covers',
'Oven',
"Pack ’n Play/travel crib",
'Path to entrance lit at night',
'Patio or balcony',
'Pets allowed',
'Pets live on this property',
'Pool',
'Private bathroom',
'Private entrance',
'Private living room',
'Refrigerator',
'Room-darkening shades',
'Safety card',
'Self Check-In',
'Shampoo',
'Smartlock',
'Smoke detector',
'Smoking allowed',
'Stair gates',
'Step-free access',
'Stove',
'Suitable for events',
'TV',
'Table corner guards',
'Washer',
'Washer / Dryer',
'Wheelchair accessible',
'Wide clearance to bed',
'Wide clearance to shower and toilet',
'Wide doorway',
'Wide hallway clearance',
'Window guards',
'Wireless Internet',
'translation missing: en.hosting_amenity_49',
'translation missing: en.hosting_amenity_50'}
'''
amenities = sorted([amenity.title() for amenity in amenities if 'translation' not in amenity])
amenity_str = []
for i in range(0, len(amenities)):
amenity_flag = request.form.get(amenities[i])
if amenity_flag:
amenity_str.append(amenities[i])
data['amenities'] = amenity_str
'''
for amenity in amenities:
if request.form.get(amenity):
data[amenity] = True
else:
data[amenity] = False
demographics = pd.read_csv("demographics.csv")
print(demographics.head())
data = pd.DataFrame({key: [data[key]] for key in data})
for venue_type in venue_types:
data[venue_type] = np.nan
data = data.merge(demographics, left_on='zipcode', right_on="zipcode")
print(data)
data[venue_types] = data[['longitude', 'latitude']].apply(
lambda x: get_amenities(float(x.longitude), float(x.latitude), 0.1), axis=1)
print(dict(data.iloc[0]).keys())
print("Preprocessing is done")
with open("tfidf.pkl", "rb") as f:
tfidf = pkl.load(f)
english_stopwords = stopwords.words("english")
lemm = WordNetLemmatizer()
def preprocess_text(text):
tokens = [lemm.lemmatize(word) for word in word_tokenize(str(text).lower())]
tokens = [token for token in tokens if token not in english_stopwords \
and token != " " \
and token.strip() not in punctuation
and not token.isdigit()]
text = " ".join(tokens)
return text
data['names_preproc'] = data['name'].map(preprocess_text)
transformed_names = tfidf.transform(data['names_preproc'])
for i in range(200):
data[str(i)] = transformed_names[:, i].todense()
new_columns = ['accommodates', 'bathrooms', 'bedrooms', 'beds',
'instant_bookable', 'latitude', 'longitude', 'zipcode',
'High chair', 'Smartlock', 'Fireplace guards', 'Heating',
'Cleaning before checkout', 'Smoke detector', 'Lockbox',
'Refrigerator', 'Hot water', 'Dryer', 'Self Check-In',
'Smoking allowed', 'Stove', 'Bed linens', 'Microwave', 'Crib',
'Washer / Dryer', 'Air conditioning', 'Fire extinguisher',
'Coffee maker', 'Ethernet connection', 'Accessible-height bed',
'Keypad', '24-hour check-in', 'Baby monitor',
'Laptop friendly workspace', 'Breakfast', 'Family/kid friendly',
'Free parking on street', 'Doorman', 'Carbon monoxide detector',
'Gym', 'Firm matress', 'First aid kit', 'Baby bath',
"Children’s dinnerware", 'Private entrance',
'Dishes and silverware', 'Game console', 'Step-free access',
'Hair dryer', 'Lock on bedroom door', 'Shampoo', 'Window guards',
'Bathtub', 'Pool', 'Babysitter recommendations',
'Private bathroom', 'Buzzer/wireless intercom',
'Wireless Internet', 'Extra pillows and blankets',
'Elevator in building', 'Accessible-height toilet', 'Dog(s)',
"Pack ’n Play/travel crib", 'Outlet covers', 'Washer', 'Hot tub',
'Wheelchair accessible', 'Dishwasher',
'Changing table',
'Free parking on premises', 'Long term stays allowed',
'Room-darkening shades', 'Cooking basics', 'Cable TV',
'translation missing: en.hosting_amenity_49', 'Iron',
'Patio or balcony', 'Wide clearance to bed',
'Flat smooth pathway to front door', 'Kitchen', 'Wide doorway',
'Doorman Entry', 'Wide hallway clearance', 'Stair gates',
'Garden or backyard', 'Pets live on this property', 'Safety card',
'Suitable for events', 'Grab-rails for shower and toilet',
'Path to entrance lit at night', 'BBQ grill', 'Cat(s)',
'Table corner guards', 'Essentials', 'Indoor fireplace',
'translation missing: en.hosting_amenity_50',
'Private living room', 'Internet', 'Luggage dropoff allowed',
'Other pet(s)', 'Oven', 'TV',
'Wide clearance to shower and toilet', 'Beach essentials',
'Hangers', 'Pets allowed', "Children’s books and toys", "discount",
'cancellation_policy_flexible',
'cancellation_policy_long_term',
'cancellation_policy_moderate', 'cancellation_policy_no_refunds',
'cancellation_policy_strict',
'cancellation_policy_super_strict_30', 'bed_type_Airbed',
'bed_type_Couch', 'bed_type_Futon', 'bed_type_Pull-out Sofa',
'bed_type_Real Bed', 'room_type_Entire home/apt',
'room_type_Private room', 'room_type_Shared room',
'property_type_Apartment', 'property_type_Bed & Breakfast',
'property_type_Boat', 'property_type_Boutique hotel',
'property_type_Bungalow', 'property_type_Cabin',
'property_type_Castle', 'property_type_Cave',
'property_type_Chalet', 'property_type_Condominium',
'property_type_Dorm', 'property_type_Earth House',
'property_type_Guest suite', 'property_type_Guesthouse',
'property_type_Hostel', 'property_type_House', 'property_type_Hut',
'property_type_In-law', 'property_type_Lighthouse',
'property_type_Loft', 'property_type_Other',
'property_type_Serviced apartment', 'property_type_Tent',
'property_type_Timeshare', 'property_type_Townhouse',
'property_type_Vacation home', 'property_type_Villa',
'5_years_or_less', '5-9_years', '10-14_years', '15-19_years',
'20-24_years', '25-34_years', '35-44_years', '45-54_years',
'55-59_years', '60-64_years', '65-74_years', '75-84_years',
'85_years_or_more', 'households', '$9,999_or_less',
'$10,000-$14,999', '$15,000-$24,999', '$25,000-$34,999',
'$35,000-$49,999', '$50,000-$64,999', '$65,000-$74,999',
'$75,000-$99,999', '$100,000_or_more', 'median_household_income',
'mean_household_income', 'lawyer', 'light_rail_station',
'locksmith', 'subpremise', 'roofing_contractor',
'point_of_interest', 'plumber', 'health', 'premise',
'fire_station', 'police', 'food', 'natural_feature',
'subway_station', 'department_store', 'cemetery', 'book_store',
'beauty_salon', 'liquor_store', 'furniture_store',
'physiotherapist', 'car_wash', 'neighborhood', 'jewelry_store',
'bowling_alley', 'movie_rental', 'aquarium', 'library',
'meal_delivery', 'gas_station', 'bicycle_store', 'taxi_stand',
'mosque', 'night_club', 'accounting', 'convenience_store',
'hair_care', 'shoe_store', 'museum', 'bus_station', 'store',
'travel_agency', 'movie_theater', 'hospital', 'electrician',
'cafe', 'political', 'airport', 'car_rental', 'car_repair',
'university', 'grocery_or_supermarket', 'veterinary_care',
'laundry', 'funeral_home', 'hindu_temple', 'gym', 'post_office',
'pharmacy', 'parking', 'school', 'stadium', 'bar', 'zoo', 'church',
'local_government_office', 'finance', 'art_gallery',
'real_estate_agency', 'place_of_worship', 'hardware_store',
'florist', 'clothing_store', 'painter', 'bank', 'meal_takeaway',
'spa', 'home_goods_store', 'restaurant', 'bakery', 'storage',
'doctor', 'synagogue', 'transit_station', 'campground', 'lodging',
'courthouse', 'rv_park', 'embassy', 'casino', 'moving_company',
'amusement_park', 'pet_store', 'insurance_agency', 'park',
'shopping_mall', 'dentist', 'electronics_store', 'atm',
'establishment', 'car_dealer', 'train_station',
'general_contractor', '0', '1', '2', '3', '4', '5', '6', '7', '8',
'9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19',
'20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30',
'31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41',
'42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52',
'53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63',
'64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74',
'75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85',
'86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96',
'97', '98', '99', '100', '101', '102', '103', '104', '105', '106',
'107', '108', '109', '110', '111', '112', '113', '114', '115',
'116', '117', '118', '119', '120', '121', '122', '123', '124',
'125', '126', '127', '128', '129', '130', '131', '132', '133',
'134', '135', '136', '137', '138', '139', '140', '141', '142',
'143', '144', '145', '146', '147', '148', '149', '150', '151',
'152', '153', '154', '155', '156', '157', '158', '159', '160',
'161', '162', '163', '164', '165', '166', '167', '168', '169',
'170', '171', '172', '173', '174', '175', '176', '177', '178',
'179', '180', '181', '182', '183', '184', '185', '186', '187',
'188', '189', '190', '191', '192', '193', '194', '195', '196',
'197', '198', '199', 'city_arverne', 'city_astoria',
'city_auburndale', 'city_averne', 'city_bay ridge', 'city_bayside',
'city_bedstuy', 'city_belle harbor', 'city_bellerose', 'city_bk',
'city_briarwood', 'city_bronx ny', 'city_brooklyn',
'city_bushwick', 'city_cambria heights', 'city_carroll gardens',
'city_college point', 'city_corona', 'city_east elmhurst',
'city_east williamsburg', 'city_elmhurst', 'city_elmont',
'city_elmuhrust', 'city_far rockaway', 'city_floral park',
'city_flushing', 'city_forest hills', 'city_fort greene',
'city_fresh meadows', 'city_glendale', 'city_glendale\nglendale',
'city_greenpoint', 'city_harlem', "city_hell's kitchen",
'city_hollis', 'city_howard beach', 'city_jackson heights',
'city_jamaica', 'city_kew gardens', 'city_kew gardens hills',
'city_kips bay', 'city_l.i.c', 'city_laurelton', 'city_lawrence',
'city_lic', 'city_long island city', 'city_longislandcity',
'city_lower east side', 'city_manhattan', 'city_manhattan ny',
'city_maspeth', 'city_middle village', 'city_new york', 'city_nyc',
'city_oakland gardens', 'city_ozone park', 'city_park slope',
'city_parkchester', 'city_parkchester bronx', 'city_queens',
'city_red hook', 'city_rego park', 'city_richmond hill',
'city_ridgewood', 'city_riverdale', 'city_rockaway beach',
'city_rosedale', 'city_saint albans', 'city_south ozone park',
'city_south richmond hill', 'city_sprinfield gardens',
'city_springfield gardens', 'city_st albans', 'city_st. albans',
'city_staten island', 'city_statenisland', 'city_sunnysidebronx',
'city_valley stream', 'city_wadsworth terrace', 'city_whitestone',
'city_williamsburg', 'city_woodside', 'city_yonkers',
'metropolitan_NYC', 'metropolitan_dc', 'state_NY']
for new_column in new_columns:
if new_column not in data.columns:
data[new_column] = np.nan
data['city_'+data['city']] = [1]
data['state_NY'] = [1]
data.fillna(0, inplace=True)
data.drop(columns = ['name','city','metropolitan','state', 'names_preproc'], inplace = True)
for column in data.columns:
if column not in new_columns:
print(column)
with open("model_200.pkl", "rb") as f:
model = pkl.load(f)
data[['accommodates', 'bathrooms', 'bedrooms', 'beds', 'latitude', 'longitude', 'discount',
'$10,000-$14,999', '$15,000-$24,999', '$25,000-$34,999', '$35,000-$49,999', '$50,000-$64,999', '$65,000-$74,999',
'$75,000-$99,999', '$100,000_or_more', 'median_household_income', 'mean_household_income']] = data[['accommodates', 'bathrooms', 'bedrooms', 'beds', 'latitude', 'longitude', 'discount',
'$10,000-$14,999', '$15,000-$24,999', '$25,000-$34,999', '$35,000-$49,999', '$50,000-$64,999', '$65,000-$74,999',
'$75,000-$99,999', '$100,000_or_more', 'median_household_income', 'mean_household_income']].astype(float)
with open("columns_train.pkl", 'rb') as f:
columns_s = pkl.load(f)
price = model.predict(data[columns_s])[0]
print(price)
prop_price = int(request.form.get('price'))
print(prop_price)
print(1/(1-(prop_price*0.02/(price*12*30))))
pay_back = int(np.log(1/(1-(prop_price*0.02/(price*12*30))))/np.log(1+0.02))
return render_template('price.html', price=price, price_div = int(0.97*price), prop_price = prop_price,
pay_back=pay_back)