forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
focal_loss.py
executable file
·132 lines (110 loc) · 4.73 KB
/
focal_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
@manager.LOSSES.add_component
class FocalLoss(nn.Layer):
"""
The implement of focal loss.
The focal loss requires the label is 0 or 1 for now.
Args:
alpha (float, list, optional): The alpha of focal loss. alpha is the weight
of class 1, 1-alpha is the weight of class 0. Default: 0.25
gamma (float, optional): The gamma of Focal Loss. Default: 2.0
ignore_index (int64, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. Default ``255``.
"""
def __init__(self, alpha=0.25, gamma=2.0, ignore_index=255):
super().__init__()
self.alpha = alpha
self.gamma = gamma
self.ignore_index = ignore_index
self.EPS = 1e-10
def forward(self, logit, label):
"""
Forward computation.
Args:
logit (Tensor): Logit tensor, the data type is float32, float64. Shape is
(N, C, H, W), where C is number of classes.
label (Tensor): Label tensor, the data type is int64. Shape is (N, H, W),
where each value is 0 <= label[i] <= C-1.
Returns:
(Tensor): The average loss.
"""
assert logit.ndim == 4, "The ndim of logit should be 4."
assert logit.shape[1] == 2, "The channel of logit should be 2."
assert label.ndim == 3, "The ndim of label should be 3."
class_num = logit.shape[1] # class num is 2
logit = paddle.transpose(logit, [0, 2, 3, 1]) # N,C,H,W => N,H,W,C
mask = label != self.ignore_index # N,H,W
label = paddle.where(mask, label, paddle.zeros_like(label))
mask = paddle.unsqueeze(mask, 3)
mask = paddle.cast(mask, 'float32')
mask.stop_gradient = True
label = F.one_hot(label, class_num) # N,H,W,C
label = paddle.cast(label, logit.dtype)
label.stop_gradient = True
loss = F.sigmoid_focal_loss(
logit=logit,
label=label,
alpha=self.alpha,
gamma=self.gamma,
reduction='none')
loss = loss * mask
avg_loss = paddle.sum(loss) / (
paddle.sum(paddle.cast(mask != 0., 'int32')) * class_num + self.EPS)
return avg_loss
@manager.LOSSES.add_component
class MultiClassFocalLoss(nn.Layer):
"""
The implement of focal loss for multi class.
Args:
alpha (float, list, optional): The alpha of focal loss. alpha is the weight
of class 1, 1-alpha is the weight of class 0. Default: 0.25
gamma (float, optional): The gamma of Focal Loss. Default: 2.0
ignore_index (int64, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. Default ``255``.
"""
def __init__(self, alpha=1.0, gamma=2.0, ignore_index=255):
super().__init__()
self.alpha = alpha
self.gamma = gamma
self.ignore_index = ignore_index
self.EPS = 1e-10
def forward(self, logit, label):
"""
Forward computation.
Args:
logit (Tensor): Logit tensor, the data type is float32, float64. Shape is
(N, C, H, W), where C is number of classes.
label (Tensor): Label tensor, the data type is int64. Shape is (N, H, W),
where each value is 0 <= label[i] <= C-1.
Returns:
(Tensor): The average loss.
"""
assert logit.ndim == 4, "The ndim of logit should be 4."
assert label.ndim == 3, "The ndim of label should be 3."
logit = paddle.transpose(logit, [0, 2, 3, 1])
label = label.astype('int64')
ce_loss = F.cross_entropy(
logit, label, ignore_index=self.ignore_index, reduction='none')
pt = paddle.exp(-ce_loss)
focal_loss = self.alpha * ((1 - pt)**self.gamma) * ce_loss
mask = paddle.cast(label != self.ignore_index, 'float32')
focal_loss *= mask
avg_loss = paddle.mean(focal_loss) / (paddle.mean(mask) + self.EPS)
return avg_loss