Extend the language of boolean expressions with arithmetic expressions on natural numbers, according to the following AST:
type expr =
True
| False
| Not of expr
| And of expr * expr
| Or of expr * expr
| If of expr * expr * expr
| Zero
| Succ of expr
| Pred of expr
| IsZero of expr
The meaning of the new constructs is the following:
- Zero represents the natural number 0;
- Succ e evaluates to the successor of e;
- Pred e evaluates to the predecessor of e (defined only if e is not zero);
- IsZero e evaluates to true iff e evaluates to 0.
Follow the unit tests in arithexpr.ml for the concrete syntax of the language. To run the tests, execute the following command from the project directory:
dune test
For example, the following is a syntactically correct expression:
iszero pred succ 0 and not iszero succ pred succ 0
You can check its AST via dune utop lib
as follows:
"iszero pred succ 0 and not iszero succ pred succ 0" |> ArithexprLib.Main.parse;;
The big-step semantics extends that of boolean expressions with the following rules:
---------------------------- [B-Zero]
Zero => 0
e => n
---------------------------- [B-Succ]
Succ(e) => n+1
e => n n>0
---------------------------- [B-Pred]
Pred(e) => n-1
e => 0
---------------------------- [B-IsZeroZero]
IsZero(e) => true
e => n n>0
---------------------------- [B-IsZeroSucc]
IsZero(e) => false
The eval
function must have the following type:
eval : expr -> exprval
where the type exprval
, used to wrap booleans and naturals, must be defined as follows (in lib/main.ml):
type exprval = Bool of bool | Nat of int
Note that some expressions in this language are not well-typed, because they improperly mix natural numbers with booleans. For instance, this is the case for the expressions:
iszero true
succ iszero 0
not 0
In all these cases, the evaluation should produce a run-time error specifying the cause of the error. Run-time errors should also be raised for the expressions which evaluate to negative values, like the following:
pred 0
pred pred succ 0
The small-step semantics extends that of boolean expressions with the following rules:
nv ::= Zero | Succ(nv)
e -> e'
----------------------------- [S-Succ]
Succ(e) -> Succ(e')
----------------------------- [S-PredSucc]
Pred(Succ(nv)) -> nv
e -> e'
----------------------------- [S-Pred]
Pred(e) -> Pred(e')
----------------------------- [S-IsZeroZero]
IsZero(Zero) -> True
----------------------------- [S-IsZeroSucc]
IsZero(Succ(nv)) -> False
e -> e'
----------------------------- [S-IsZero]
IsZero(e) -> IsZero(e')
For example, this semantics should give rise to the following execution trace:
dune exec arithexpr trace test/test1
iszero(pred(succ(pred(succ(0)))))
-> iszero(pred(succ(0)))
-> iszero(0)
-> true