forked from hMRI-group/hMRI-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hmri_run_proc_pipeline.m
220 lines (194 loc) · 8.19 KB
/
hmri_run_proc_pipeline.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
function out = hmri_run_proc_pipeline(job)
% Deal with the preprocessing pipelines. There are 2 options:
% 1/ "US+Smooth+MaskCrt"
% 2/ "US+Dartel+Smooth+MaskCrt"
% The only difference is the inclusion of Dartel to bring all the data into
% a common space, before warping into MNI.
%
% So the operations go through 3 or 4 main steps:
% 1/ unified segementation, if no Dartel with warping to MNI
% 2/ if with Dartel, Dartel estimation and warping to MNI
% 3/ smoothing with tissue class specific smoothing
% 4/ creation of tissue specific mask
%
% Input include only some parametric maps, the structural maps (for
% segmentation), the required smoothing and which pipeline to use. All
% other options are hard-coded!
% By default, these pipelines focus only on the first 2 tissue classes,
% i.e. GM and WM only.
%
% For more flexibility, individual modules can be combined. :-)
%
% The output structure 'out' provides:
% .tc : cell-array of size {n_TCs x n_pams}. Each element tc{ii,jj} is
% a cell array {n_subj x 1} with each subject's smoothed data for
% the ii^th TC and jj^th MPM
% .smwc : cell-array of size {n_TCs x1}. Each element smwc{ii} is a
% char array (n_subj x 1) with each subject's smooth modulated
% warped ii^th tissue class
% .maskTC : cell-array of size {n_TCs x1}. Each element smwc{ii} is the
% filename of the ii^th tissue specific masks
%_______________________________________________________________________
% Copyright (C) 2017 Cyclotron Research Centre
% Written by Christophe Phillips
%% 1/ Setup the smoothing and execute hmri_run_proc_US
%----------------------------------------------------
% Get the proc_US job structure, with all the defaults
proc_us = tbx_scfg_hmri_proc_US;
[~, job_US] = harvest(proc_us, proc_us, false, false);
% Fill in the data now: parametric maps & structurals for segmentation
if job.pipe_c==1 % US+smooth -> warp the parametric maps here.
job_US.many_sdatas.vols_pm = job.vols_pm;
end
job_US.many_sdatas.channel.vols = job.s_vols;
% Set voxel sizes & BB
job_US.many_sdatas.vox = job.vox;
job_US.many_sdatas.bb = job.bb;
% Get the output direcotry across
job_US.many_sdatas.output = job.output;
% Run the *_proc_US
fprintf('\nhMRI-pipeline: running the US module.\n')
out_US = hmri_run_proc_US(job_US);
% where the output structure 'out_US'
% .tiss : struct-array with subfields
% .c and .rc, for the native and Dartel imported
% .wc and .mwc, for the warped and modulated
% tissue class images
% .maps : struct-array with subfields 'wvols_pm' for the warped parametric
% maps
% .def : cell-array with the deformations for each subject.
%% 2/ Proceed with dartel (only if requested)
%-------------------------------------------
% including template create and warping into MNI space
if job.pipe_c == 2
if str2double(spm('Ver','spm_dartel_norm_fun'))>=7182
% Knows how to handle output specification
use_spm_output_handling = true;
else
use_spm_output_handling = false;
end
% DARTEL processing:
proc_Dartel = tbx_scfg_hmri_proc_Dartel;
% a) warping with template creation
proc_Dwarp = proc_Dartel.values{1};
[~, job_Dwarp] = harvest(proc_Dwarp, proc_Dwarp, false, false);
% Fill in the filenames for rc1 and rc2, i.e. *only* GM and WM
for ii=1:2
job_Dwarp.images{ii} = spm_file(out_US.tiss(ii).rc,'number',1);
end
job_Dwarp.output = job.output;
% Run the Dartel-warp job
fprintf('\nhMRI-pipeline: running the Dartel-warp module.\n')
out_Dwarp = hmri_run_proc_dartel_template(job_Dwarp);
% out_Dwarp = spm_dartel_template(job_Dwarp);
if ~use_spm_output_handling
% Move if using specific per-subject subdirectory -> 'dart_files'
% This should also include the flow fields!
if isfield(job.output,'outdir_ps')
dn_dartel = fullfile(job.output.outdir_ps{1},'Dartel_Templates');
if ~exist(dn_dartel,'dir')
mkdir(dn_dartel)
end
current_path = spm_file(out_Dwarp.template{1},'path');
f2move = spm_select('FPList',current_path,'^Template_[\d]\.nii$');
for ii=1:size(f2move,1)
movefile(deblank(f2move(ii,:)),dn_dartel);
end
out_Dwarp.template = spm_file(out_Dwarp.template,'path',dn_dartel);
end
end
% b) normalize to MNI
proc_Dnorm = proc_Dartel.values{3};
[~, job_Dnorm] = harvest(proc_Dnorm, proc_Dnorm, false, false);
% get last tempalte
job_Dnorm.template = out_Dwarp.template(end);
% get GM, WM and CSF tissue class
for ii=1:3
job_Dnorm.multsdata.vols_tc{ii} = ...
spm_file(out_US.tiss(ii).c,'number',1);
end
% get the parametric maps
job_Dnorm.multsdata.vols_pm = job.vols_pm;
% get the warps
job_Dnorm.multsdata.vols_field = out_Dwarp.files;
% Set voxel sizes
job_Dnorm.vox = job.vox;
job_Dnorm.bb = job.bb;
% get the output directory
job_Dnorm.output = job.output;
% Run the Dartel-Normalize-to-MNI job
fprintf('\nhMRI-pipeline: running the Darte-normalize-to-MNI module.\n')
out_Dnorm = hmri_run_proc_dartel_norm(job_Dnorm);
end
%% 3/ Deal with smoothing, with hmri_run_proc_smooth
%--------------------------------------------------
proc_smooth = tbx_scfg_hmri_proc_smooth;
[~, job_smooth] = harvest(proc_smooth, proc_smooth, false, false);
% Get the image data, working with mwc1, mwc2 and mwc3 (GM, WM and CSF)
switch job.pipe_c
case 1 % US+smooth
job_smooth = fill_fn_from_US(job_smooth,out_US);
case 2 % US+Dartel+smooth
% Fit in DARTEL data
job_smooth.vols_pm = out_Dnorm.vols_wpm;
job_smooth.vols_mwc = out_Dnorm.vols_mwc;
otherwise
error('hmri:pipeline', 'Wrong hmri-pipeline option.');
end
% Get the smoothing kernel
job_smooth.fwhm = job.fwhm;
% Run the *_proc_smooth
fprintf('\nhMRI-pipeline: running the weighted-average (smoothing) module.\n')
out_wa = hmri_run_proc_smooth(job_smooth);
% The 'out_wa' structure is organized as a structure with 2 fileds
% .tc : cell-array of size {n_TCs x n_pams}. Each element tc{ii,jj} is a
% cell array {n_subj x 1} with each subject's smoothed data for
% the ii^th TC and jj^th MPM
% .smwc : cell-array of size {n_TCs x1}. Each element smwc{ii} is a char
% array (n_subj x 1) with each subject's smooth modulated warped
% ii^th tissue class
%% 4/ Create the tissue specific masks
proc_crtMask = tbx_scfg_hmri_proc_crtMask;
[~, job_crtMask] = harvest(proc_crtMask, proc_crtMask, false, false);
% Get the smwc images in & fix output directory
job_crtMask.vols_smwc = out_wa.smwc;
if isfield(job.output,'outdir_ps')
job_crtMask.options.output = struct('outdir',job.output.outdir_ps);
else
job_crtMask.options.output = job.output;
end
% Call to
out_cM = hmri_run_proc_crtMask(job_crtMask);
% The out_cM structure has 2 fields:
% .fn_maskTC : filenames (char array) of the tissue specific masks
% .fn_meanTC : filenames (char array) of the mean tissue class images
%% 5/ Collect output and as needed
out = out_wa;
% There are 2 fields with cell array in 'out_wa' :
% .tc : tissue specifically smoothed qMRIs
% .smwc : smooth modulated warped tissue class images
% Adding the the tissue mask images -> necessary for SPM analysis
out.maskTC = cellstr(out_cM.fn_maskTC);
end
%% ________________________________________________________________________
%
% SUBFUNCTION
%__________________________________________________________________________
function job_smooth = fill_fn_from_US(job_smooth,out_US)
% Fill in the filenames of images (parametric maps and tissue classes) for
% the US+smooth pipeline.
% Parametric maps -> use all of them
N_pm = numel(out_US.maps);
for ii=1:N_pm
job_smooth.vols_pm{ii} = out_US.maps(ii).wvols_pm;
end
% Tissue classes -> use GM, WM and CSF, i.e. #1, #2 and #3
for ii=1:3
job_smooth.vols_mwc{ii} = spm_file(out_US.tiss(ii).mwc,'number',1);
end
% NOTE:
% Not sure it's necessary to add the ',1' to specify the volume for the
% tissue class maps but that's how it looks when using the module with the
% batch GUI -> stay on the safe side and apply.
end
%_______________________________________________________________________