-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_load_ckpt.py
802 lines (655 loc) · 29.7 KB
/
train_load_ckpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
import torch as ch
from torch.cuda.amp import GradScaler
from torch.cuda.amp import autocast
import torch.nn.functional as F
import torch.distributed as dist
ch.backends.cudnn.benchmark = True
ch.autograd.profiler.emit_nvtx(False)
ch.autograd.profiler.profile(False)
from PIL import Image
from torchvision import models
import torch
import torch.nn as nn
import torchmetrics
import numpy as np
import math
from tqdm import tqdm
import os
import time
import json
from uuid import uuid4
from typing import List
from pathlib import Path
from argparse import ArgumentParser
from fastargs import get_current_config
from fastargs.decorators import param
from fastargs import Param, Section
from fastargs.validation import And, OneOf
from ffcv.pipeline.operation import Operation
from ffcv.loader import Loader, OrderOption
from ffcv.transforms import ToTensor, ToDevice, Squeeze, NormalizeImage, \
RandomHorizontalFlip, ToTorchImage
from ffcv.fields.rgb_image import CenterCropRGBImageDecoder, \
RandomResizedCropRGBImageDecoder
from ffcv.fields.basics import IntDecoder
from architecture import *
from pytorch_pretrained_vit import ViT
from torchvision import transforms
from PIL import Image
import torchvision
import matplotlib.pyplot as plt
from yolo_v8 import yolo_cls_nets
Section('model', 'model details').params(
arch=Param(str, default='resnet18'),
pretrained=Param(int, 'is pretrained? (1/0)', default=0)
)
Section('resolution', 'resolution scheduling').params(
min_res=Param(int, 'the minimum (starting) resolution', default=160),
max_res=Param(int, 'the maximum (starting) resolution', default=160),
end_ramp=Param(int, 'when to stop interpolating resolution', default=0),
start_ramp=Param(int, 'when to start interpolating resolution', default=0)
)
Section('data', 'data related stuff').params(
train_dataset=Param(str, '.dat file to use for training', required=True),
val_dataset=Param(str, '.dat file to use for validation', required=True),
num_workers=Param(int, 'The number of workers', required=True),
in_memory=Param(int, 'does the dataset fit in memory? (1/0)', required=True)
)
Section('lr', 'lr scheduling').params(
step_ratio=Param(float, 'learning rate step ratio', default=0.1),
step_length=Param(int, 'learning rate step length', default=30),
lr_schedule_type=Param(OneOf(['step', 'cyclic', 'cosine']), default='cyclic'),
lr=Param(float, 'learning rate', default=0.5),
lr_peak_epoch=Param(int, 'Epoch at which LR peaks', default=2),
)
Section('logging', 'how to log stuff').params(
folder=Param(str, 'log location', required=True),
log_level=Param(int, '0 if only at end 1 otherwise', default=1),
save_model_freq=Param(int, 'save model epoch frequency', default=1)
)
Section('validation', 'Validation parameters stuff').params(
batch_size=Param(int, 'The batch size for validation', default=512),
resolution=Param(int, 'final resized validation image size', default=224),
lr_tta=Param(int, 'should do lr flipping/avging at test time', default=1)
)
Section('training', 'training hyper param stuff').params(
eval_only=Param(int, 'eval only?', default=0),
batch_size=Param(int, 'The batch size', default=512),
optimizer=Param(And(str, OneOf(['sgd'])), 'The optimizer', default='sgd'),
momentum=Param(float, 'SGD momentum', default=0.9),
weight_decay=Param(float, 'weight decay', default=4e-5),
epochs=Param(int, 'number of epochs', default=30),
label_smoothing=Param(float, 'label smoothing parameter', default=0.1),
distributed=Param(int, 'is distributed?', default=0),
use_blurpool=Param(int, 'use blurpool?', default=0),
topk_info=Param(str, 'topk_info, each digit represent the sparsity level, 0 represent 100%, 1 represent 10%, etc', default=''),
topk_layer_name=Param(str, 'Topk layer name, specified for which class what to use', default='TopkLayer'),
alexnet_topk=Param(float, 'alexnet topk, prevent interference', default=0.2),
resnet50_topk=Param(float, 'resnet50 topk, prevent interference', default=0.2),
vgg_topk=Param(float, 'VGG topk, prevent interference', default=0.2),
l1_sparsity_lamda=Param(float, '', default=0),
topk_tau=Param(float, 'topk tau - the weight that would determine how mauch original activation want to keep, 1 is all and 0 is topk only', default=0.),
scramble_reverse_weight=Param(float, 'weight of how much reverse optimization would weight', default=1e-3),
scramble_reverse_lr_scale=Param(float, 'downscale the scamble down scale', default=1e-2),
topk_decay_ramp=Param(float, 'topk decay ramp?', default=1e+4),
)
Section('resume', 'training resume with checkpoints').params(
optim_ckpt=Param(str, 'checkpoint path.pt', default=""),
model_ckpt=Param(str, 'checkpoint path.pt', default=""),
resume_opt_from_ckpt=Param(int, 'use checkpoint for optimizer?', default=0),
resume_model_from_ckpt=Param(int, 'use checkpoint for optimizer?', default=0),
init_eval_checker=Param(int, 'whether to initially check the loaded model', default=0)
)
Section('dist', 'distributed training options').params(
world_size=Param(int, 'number gpus', default=1),
address=Param(str, 'address', default='localhost'),
port=Param(str, 'port', default='12355')
)
IMAGENET_MEAN = np.array([0.485, 0.456, 0.406]) * 255
IMAGENET_STD = np.array([0.229, 0.224, 0.225]) * 255
DEFAULT_CROP_RATIO = 224/256
@param('lr.lr')
@param('lr.step_ratio')
@param('lr.step_length')
@param('training.epochs')
def get_step_lr(epoch, lr, step_ratio, step_length, epochs):
if epoch >= epochs:
return 0
num_steps = epoch // step_length
return step_ratio**num_steps * lr
@param('lr.lr')
@param('training.epochs')
@param('lr.lr_peak_epoch')
def get_cyclic_lr(epoch, lr, epochs, lr_peak_epoch):
xs = [0, lr_peak_epoch, epochs]
ys = [1e-4 * lr, lr, 0]
return np.interp([epoch], xs, ys)[0]
@param('lr.lr')
@param('training.epochs')
@param('lr.lr_peak_epoch')
def get_cosine_lr(epoch, lr, epochs, lr_peak_epoch):
eta_min = 0
lr = eta_min + (lr - eta_min) * (
1 + math.cos(math.pi * epoch / epochs)) / 2
return lr
class BlurPoolConv2d(ch.nn.Module):
def __init__(self, conv):
super().__init__()
default_filter = ch.tensor([[[[1, 2, 1], [2, 4, 2], [1, 2, 1]]]]) / 16.0
filt = default_filter.repeat(conv.in_channels, 1, 1, 1)
self.conv = conv
self.register_buffer('blur_filter', filt)
def forward(self, x):
blurred = F.conv2d(x, self.blur_filter, stride=1, padding=(1, 1),
groups=self.conv.in_channels, bias=None)
return self.conv.forward(blurred)
class ImageNetTrainer:
@param('training.distributed')
def __init__(self, gpu, distributed):
self.all_params = get_current_config()
self.gpu = gpu
self.uid = str(uuid4())
if distributed:
self.setup_distributed()
self.train_loader = self.create_train_loader()
self.val_loader = self.create_val_loader()
self.initialize_logger()
self.model, self.scaler = self.create_model_and_scaler()
self.create_optimizer()
@param('dist.address')
@param('dist.port')
@param('dist.world_size')
def setup_distributed(self, address, port, world_size):
os.environ['MASTER_ADDR'] = address
import socket
from contextlib import closing
def find_free_port():
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
s.bind(('localhost', 0))
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
return s.getsockname()[1]
os.environ['MASTER_PORT'] = port
dist.init_process_group("nccl", rank=self.gpu, world_size=world_size)
ch.cuda.set_device(self.gpu)
def cleanup_distributed(self):
dist.destroy_process_group()
@param('lr.lr_schedule_type')
def get_lr(self, epoch, lr_schedule_type):
lr_schedules = {
'cyclic': get_cyclic_lr,
'step': get_step_lr,
'cosine': get_cosine_lr,
}
return lr_schedules[lr_schedule_type](epoch)
# resolution tools
@param('resolution.min_res')
@param('resolution.max_res')
@param('resolution.end_ramp')
@param('resolution.start_ramp')
def get_resolution(self, epoch, min_res, max_res, end_ramp, start_ramp):
assert min_res <= max_res
if epoch <= start_ramp:
return min_res
if epoch >= end_ramp:
return max_res
# otherwise, linearly interpolate to the nearest multiple of 32
interp = np.interp([epoch], [start_ramp, end_ramp], [min_res, max_res])
final_res = int(np.round(interp[0] / 32)) * 32
return final_res
@param('training.momentum')
@param('training.optimizer')
@param('training.weight_decay')
@param('training.label_smoothing')
@param('resume.resume_opt_from_ckpt')
@param('resume.optim_ckpt')
def create_optimizer(self, momentum, optimizer, weight_decay,
label_smoothing, resume_opt_from_ckpt, optim_ckpt):
assert optimizer == 'sgd'
# Only do weight decay on non-batchnorm parameters
all_params = list(self.model.named_parameters())
bn_params = [v for k, v in all_params if ('bn' in k)]
other_params = [v for k, v in all_params if not ('bn' in k)]
param_groups = [{
'params': bn_params,
'weight_decay': 0.
}, {
'params': other_params,
'weight_decay': weight_decay
}]
# print(param_groups)
self.optimizer = ch.optim.SGD(param_groups, lr=1, momentum=momentum)
if resume_opt_from_ckpt:
self.log({'message': f"==> Loading optimizer from ckpt {optim_ckpt}!"})
self.optimizer.load_state_dict(torch.load(optim_ckpt))
else:
self.log({'message': f"==> creating optimizer from scratch!"})
self.loss = ch.nn.CrossEntropyLoss(label_smoothing=label_smoothing)
@param('data.train_dataset')
@param('data.num_workers')
@param('training.batch_size')
@param('training.distributed')
@param('data.in_memory')
def create_train_loader(self, train_dataset, num_workers, batch_size,
distributed, in_memory):
this_device = f'cuda:{self.gpu}'
train_path = Path(train_dataset)
assert train_path.is_file()
res = self.get_resolution(epoch=0)
self.decoder = RandomResizedCropRGBImageDecoder((res, res))
image_pipeline: List[Operation] = [
self.decoder,
RandomHorizontalFlip(),
ToTensor(),
ToDevice(ch.device(this_device), non_blocking=True),
ToTorchImage(),
NormalizeImage(IMAGENET_MEAN, IMAGENET_STD, np.float16)
]
label_pipeline: List[Operation] = [
IntDecoder(),
ToTensor(),
Squeeze(),
ToDevice(ch.device(this_device), non_blocking=True)
]
order = OrderOption.RANDOM if distributed else OrderOption.QUASI_RANDOM
loader = Loader(train_dataset,
batch_size=batch_size,
num_workers=num_workers,
order=order,
os_cache=in_memory,
drop_last=True,
pipelines={
'image': image_pipeline,
'label': label_pipeline
},
distributed=distributed)
return loader
@param('data.val_dataset')
@param('data.num_workers')
@param('validation.batch_size')
@param('validation.resolution')
@param('training.distributed')
def create_val_loader(self, val_dataset, num_workers, batch_size,
resolution, distributed):
this_device = f'cuda:{self.gpu}'
val_path = Path(val_dataset)
assert val_path.is_file()
res_tuple = (resolution, resolution)
cropper = CenterCropRGBImageDecoder(res_tuple, ratio=DEFAULT_CROP_RATIO)
image_pipeline = [
cropper,
ToTensor(),
ToDevice(ch.device(this_device), non_blocking=True),
ToTorchImage(),
NormalizeImage(IMAGENET_MEAN, IMAGENET_STD, np.float16)
]
label_pipeline = [
IntDecoder(),
ToTensor(),
Squeeze(),
ToDevice(ch.device(this_device),
non_blocking=True)
]
loader = Loader(val_dataset,
batch_size=batch_size,
num_workers=num_workers,
order=OrderOption.SEQUENTIAL,
drop_last=False,
pipelines={
'image': image_pipeline,
'label': label_pipeline
},
distributed=distributed)
return loader
@param('training.l1_sparsity_lamda')
def l1_loss_func(self, model, l1_sparsity_lamda):
if l1_sparsity_lamda > 0:
l1_loss = []
for module in model.modules():
if not isinstance(module, nn.Sequential):
if isinstance(module, TopKLayer):
l1_loss.append(module.prev_x.unsqueeze(0))
return torch.cat(l1_loss).sum() * l1_sparsity_lamda
@param('training.epochs')
@param('logging.log_level')
@param('logging.save_model_freq')
@param('resume.init_eval_checker')
def train(self, epochs, log_level, save_model_freq, init_eval_checker):
# before begins, check the loaded model if there is one
if init_eval_checker:
# check the acc
self.eval_and_log({'epoch':-1})
self.best_stats['top_1'] = 0.
self.best_stats['top_5'] = 0.
for epoch in range(epochs):
self.curr_epoch = epoch
res = self.get_resolution(epoch)
print(f"Resultion at epoch {epoch} is {res}")
self.decoder.output_size = (res, res)
train_loss = self.train_loop(epoch)
if log_level > 0:
extra_dict = {
'train_loss': train_loss,
'epoch': epoch
}
save_or_not = self.eval_and_log(extra_dict)
if save_model_freq > 0 and epoch > 0:
if self.gpu == 0 and (epoch % save_model_freq == 0 or epoch == (epochs - 1)):
ch.save(self.model.state_dict(), self.log_folder / f'weights_ep_{epoch}.pt')
ch.save(self.optimizer.state_dict(), self.log_folder / f'weights_ep_{epoch}_optimizer.pt')
if save_model_freq == -1: # save the best eval models
if self.gpu == 0 and save_or_not:
print(f"Saving the new best results to {self.log_folder}")
ch.save(self.model.state_dict(), self.log_folder / f'weights_best.pt')
ch.save(self.optimizer.state_dict(), self.log_folder / f'weights_best_optimizer.pt')
self.eval_and_log({'epoch':epoch})
# if self.gpu == 0:
# ch.save(self.model.state_dict(), self.log_folder / 'final_weights.pt')
def eval_and_log(self, extra_dict={}):
start_val = time.time()
stats = self.val_loop()
val_time = time.time() - start_val
# determine to save or not
if stats['top_1'] > self.best_stats['top_1']:
save_or_not = True
self.best_stats['top_1'] = stats['top_1']
self.best_stats['top_5'] = stats['top_5']
else:
save_or_not = False
if self.gpu == 0:
self.log(dict({
'current_lr': self.optimizer.param_groups[0]['lr'],
'best_top_1': self.best_stats['top_1'],
'current_top_1': stats['top_1'],
'current_top_5': stats['top_5'],
'best_top_5': self.best_stats['top_5'],
'val_time': val_time
}, **extra_dict), vis=True)
return save_or_not
@param('model.arch')
@param('model.pretrained')
@param('training.distributed')
@param('training.use_blurpool')
@param('training.topk_info')
@param('training.topk_layer_name')
@param('resume.resume_model_from_ckpt')
@param('resume.model_ckpt')
@param('training.alexnet_topk')
@param('training.topk_tau')
@param('training.resnet50_topk')
@param('training.topk_decay_ramp')
@param('training.vgg_topk')
def create_model_and_scaler(self, arch, pretrained, distributed, use_blurpool, topk_info, resume_model_from_ckpt, model_ckpt, topk_layer_name, alexnet_topk, resnet50_topk, topk_tau, vgg_topk, topk_decay_ramp):
scaler = GradScaler()
if 'vit' == arch.lower()[:3]:
model_name_vit = arch.split("+")[1] # B_16_imagenet1k
if model_name_vit == "S":
print(f"initializing vit-s...")
# vit small
model = ViT(pretrained=False,
patches=16,
dim=384,
ff_dim=1536,
num_heads=6,
num_layers=12,
attention_dropout_rate=0.0,
dropout_rate=0.1,
classifier='token',
positional_embedding='1d',
image_size=224,
topk_layer_name=topk_layer_name,
topk_info=topk_info)
else:
model = ViT(model_name_vit, pretrained=False, image_size=224, topk_layer_name=topk_layer_name, topk_info=topk_info)
elif 'alexnet_5layers' == arch.lower():
model = alexnet_5layer(alexnet_topk, pretrained=False, topk_tau=topk_tau)
print("Using alexnet 5topk layers")
elif 'alexnet_5layers_finetune' == arch.lower():
# model = models.alexnet(pretrained=True)
model = alexnet_5layer(alexnet_topk, pretrained=True, topk_tau=topk_tau)
print("Using alexnet 5topk layers for finetune")
elif 'alexnet_5layers_finetune_perm' == arch.lower():
model = alexnet_5layer(alexnet_topk, pretrained=True, topk_tau=topk_tau, permutate=1)
print("Using alexnet 5topk layers for finetune")
elif 'alexnet_5layers_finetune_se' == arch.lower():
model = alexnet_5layer(alexnet_topk, pretrained=True, topk_tau=topk_tau, take_se_channel=1)
print("Using alexnet 5topk layers for finetune take_se_channel=1")
elif 'alexnet_5layers_finetune_x3_activation' == arch.lower():
model = alexnet_5layer(alexnet_topk, pretrained=True, topk_tau=topk_tau, activation='x3')
print("Using alexnet 5topk layers for activation x3")
elif 'alexnet_5layers_se' == arch.lower():
model = alexnet_5layer(alexnet_topk, pretrained=False, topk_tau=topk_tau, take_se_channel=1)
print("Using alexnet 5topk layers for scratch take_se_channel=1")
elif arch.lower() == 'alexnet_2layer':
model = alexnet_2layer(alexnet_topk, pretrained=False, topk_tau=topk_tau)
elif arch.lower() == 'alexnet_2layer_finetune':
model = alexnet_2layer(alexnet_topk, pretrained=True, topk_tau=topk_tau)
elif arch.lower() == 'vgg_5layers':
model = topK_VGG_5layers(vgg_topk, pretrained=False, topk_tau=topk_tau)
elif arch.lower() == 'vgg_5layers_finetune':
model = topK_VGG_5layers(vgg_topk, pretrained=True, topk_tau=topk_tau)
elif arch.lower() == 'ensemblealexnet5layertopk':
model = EnsembleAlexNet5layerTopK(alexnet_topk)
elif arch.lower() == 'alexnet':
alexnet = models.alexnet(pretrained=False)
model = alexnet
elif 'resnet50_4layers_finetune' == arch.lower():
model = topK_resnet50(resnet50_topk, topk_tau=topk_tau, pretrained=True)
elif 'resnet50_4layers_finetune_cosinetopkdecay' == arch.lower():
model = topK_resnet50(resnet50_topk, topk_tau=topk_tau, pretrained=True, topk_decay_method='cosine', topk_decay_ramp=topk_decay_ramp)
elif 'resnet50_1layer_finetune' == arch.lower():
model = topK_resnet50_1layer(resnet50_topk, topk_tau=topk_tau, pretrained=True)
elif arch == 'yolo-v8-m':
# introducing yolo-m architecture
model = yolo_cls_nets.yolo_v8_m(num_classes=1000)
else:
model = getattr(models, arch)(pretrained=pretrained)
def apply_blurpool(mod: ch.nn.Module):
for (name, child) in mod.named_children():
if isinstance(child, ch.nn.Conv2d) and (np.max(child.stride) > 1 and child.in_channels >= 16):
setattr(mod, name, BlurPoolConv2d(child))
else: apply_blurpool(child)
if use_blurpool: apply_blurpool(model)
if resume_model_from_ckpt:
self.log({'message': f"==> Loading model ckpt from {model_ckpt}!"})
if arch in ['yolo-v8-m']:
checkpoint = torch.load(model_ckpt)['model']
else:
checkpoint = torch.load(model_ckpt)
# editing the mapping keys
param_count = 0
new_checkpoint = model.state_dict()
# print(new_checkpoint.keys())
for k in checkpoint:
# print(k)
new_k = k.replace("module.net.sp_cnn.", "")
if new_k in new_checkpoint:
new_checkpoint[new_k] = checkpoint[k]
param_i = 1
for i in new_checkpoint[new_k].shape:
param_i *= i
param_count += param_i
print(f"==> Total param loaded: {param_count / 1e+6} M")
model.load_state_dict(new_checkpoint)
else:
self.log({'message': f"==> creating model from scratch!"})
# model = model.to(memory_format=ch.channels_last)
model = model.to(self.gpu)
if distributed:
model = ch.nn.parallel.DistributedDataParallel(model, device_ids=[self.gpu])
# model = torch.compile(model)
return model, scaler
@param('logging.log_level')
@param('training.l1_sparsity_lamda')
def train_loop(self, epoch, log_level, l1_sparsity_lamda):
model = self.model
model.train()
losses = []
lr_start, lr_end = self.get_lr(epoch), self.get_lr(epoch + 1)
iters = len(self.train_loader)
lrs = np.interp(np.arange(iters), [0, iters], [lr_start, lr_end])
iterator = tqdm(self.train_loader)
for ix, (images, target) in enumerate(iterator):
### Training start
for param_group in self.optimizer.param_groups:
param_group['lr'] = lrs[ix]
self.optimizer.zero_grad(set_to_none=True)
with autocast():
output = self.model(images)
loss_train = self.loss(output, target)
if l1_sparsity_lamda > 0:
l1_loss = self.l1_loss_func(self.model)
if l1_loss:
loss_train += l1_loss
self.scaler.scale(loss_train).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
### Training end
### Logging start
if log_level > 0:
if self.gpu == 0:
losses.append(loss_train.detach().item())
group_lrs = []
for _, group in enumerate(self.optimizer.param_groups):
group_lrs.append(f'{group["lr"]:.3f}')
names = ['ep', 'iter', 'lrs']
values = [epoch, ix, group_lrs]
if log_level > 1:
names += ['loss']
values += [f'{loss_train.item():.3f}']
if l1_sparsity_lamda > 0:
names += ['l1 loss']
values += [f'{l1_loss.item():.3f}']
msg = ', '.join(f'{n}={v}' for n, v in zip(names, values))
iterator.set_description(msg)
### Logging end
# if ix > 50:
# break
if len(losses) != 0:
return sum(losses) / len(losses) * 1.
@param('validation.lr_tta')
def val_loop(self, lr_tta):
model = self.model
model.eval()
with ch.no_grad():
with autocast():
for images, target in tqdm(self.val_loader):
output = self.model(images)
if lr_tta:
output += self.model(ch.flip(images, dims=[3]))
for k in ['top_1', 'top_5']:
self.val_meters[k](output, target)
loss_val = self.loss(output, target)
self.val_meters['loss'].update(loss_val)
stats = {k: m.compute().item() for k, m in self.val_meters.items()}
[meter.reset() for meter in self.val_meters.values()]
return stats
@param('logging.folder')
def initialize_logger(self, folder):
self.val_meters = {
'top_1': torchmetrics.Accuracy(task="multiclass", num_classes=1000).to(self.gpu),
'top_5': torchmetrics.Accuracy(task="multiclass", num_classes=1000, top_k=5).to(self.gpu),
'loss': torchmetrics.aggregation.MeanMetric().to(self.gpu)
}
self.best_stats = {
'top_1': 0.,
'top_5': 0.,
'loss': 0.
}
if self.gpu == 0:
folder = (Path(folder) / str(self.uid)).absolute()
folder.mkdir(parents=True)
self.log_folder = folder
self.start_time = time.time()
print(f'=> Logging in {self.log_folder}')
params = {
'.'.join(k): self.all_params[k] for k in self.all_params.entries.keys()
}
with open(folder / 'params.json', 'w+') as handle:
json.dump(params, handle)
def val_image_feature_maps(self, dir, cur_time):
img_ = Image.open("/home/ylz1122/ffcv-imagenet-train/airplane1-chair2.png")
tfms = transforms.Compose([transforms.Resize(224), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),])
img = tfms(img_).unsqueeze(0)
img = img.to("cuda:0")
self.model.eval()
with torch.no_grad():
outputs = self.model(img)
layer_sparse_activation = {}
for name, m in self.model.module.features.named_children():
if isinstance(m, TopKLayer):
layer_sparse_activation[name] = m.sparse_x.detach().cpu()
target_tensor = layer_sparse_activation['3']
target_tensor = target_tensor.squeeze(0).unsqueeze(1).repeat(1, 3, 1, 1)#.mean(0, keepdim=True)
img_size = (img.shape[-2], img.shape[-1])
target_tensor = torch.nn.functional.interpolate(target_tensor, size=img_size)
n, c, h, w = target_tensor.shape
target_tensor = target_tensor / target_tensor.max()
target_tensor = target_tensor.add(1).mul(0.5)
grid_img = torchvision.utils.make_grid(target_tensor, nrow=5)
plt.clf()
plt.figure(figsize=(50, 50))
# plt.figure(figsize=(10, 10))
plt.imshow(grid_img.permute(1, 2, 0))
os.makedirs(os.path.join(dir, "vis"), exist_ok=True)
plt.savefig(os.path.join(dir, "vis", f"vis_layer_3_{cur_time}.png"))
print(f"==> Log visualization in {os.path.join(dir, 'vis')}")
def log(self, content, vis=False):
print(f'=> Log: {content}')
if self.gpu != 0: return
cur_time = time.time()
with open(self.log_folder / 'log', 'a+') as fd:
fd.write(json.dumps({
'timestamp': cur_time,
'relative_time': cur_time - self.start_time,
**content
}) + '\n')
fd.flush()
# handle the img log
# if vis:
# self.val_image_feature_maps(self.log_folder, cur_time)
@classmethod
@param('training.distributed')
@param('dist.world_size')
def launch_from_args(cls, distributed, world_size):
if distributed:
ch.multiprocessing.spawn(cls._exec_wrapper, nprocs=world_size, join=True)
else:
cls.exec(0)
@classmethod
def _exec_wrapper(cls, *args, **kwargs):
make_config(quiet=True)
cls.exec(*args, **kwargs)
@classmethod
@param('training.distributed')
@param('training.eval_only')
def exec(cls, gpu, distributed, eval_only):
trainer = cls(gpu=gpu)
if eval_only:
trainer.eval_and_log()
else:
trainer.train()
if distributed:
trainer.cleanup_distributed()
# Utils
class MeanScalarMetric(torchmetrics.Metric):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.add_state('sum', default=ch.tensor(0.), dist_reduce_fx='sum')
self.add_state('count', default=ch.tensor(0), dist_reduce_fx='sum')
def update(self, sample: ch.Tensor):
self.sum += sample.sum()
self.count += sample.numel()
def compute(self):
return self.sum.float() / self.count
# Running
def make_config(quiet=False):
config = get_current_config()
parser = ArgumentParser(description='Fast imagenet training')
config.augment_argparse(parser)
config.collect_argparse_args(parser)
config.validate(mode='stderr')
if not quiet:
config.summary()
if __name__ == "__main__":
make_config()
ImageNetTrainer.launch_from_args()