-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patharchitecture.py
388 lines (332 loc) · 14.7 KB
/
architecture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
from copy import copy
from torchvision import models
import torch
import torch.nn as nn
import numpy as np
from torch.nn.utils import spectral_norm
import math
def conv2d(*args, **kwargs):
return spectral_norm(nn.Conv2d(*args, **kwargs))
def sparse_ch(x, topk):
n, c, _, _ = x.shape
x = x.reshape(n, c)
topk_keep_num = int(max(1, topk * c))
_, index = torch.topk(x, topk_keep_num, dim=1)
mask = torch.zeros_like(x).scatter_(1, index, 1)
x = x * mask
x = x.unsqueeze(-1).unsqueeze(-1)
return x
class Swish(nn.Module):
def forward(self, feat):
return feat * torch.sigmoid(feat)
class SEBlock(nn.Module):
def __init__(self, ch_in, ch_out):
super().__init__()
self.main = nn.ModuleList([ nn.AdaptiveAvgPool2d(4), nn.Sigmoid(),
conv2d(ch_in, ch_out, 4, 1, 0, bias=False), nn.ReLU(), #Swish(),
conv2d(ch_out, ch_out, 1, 1, 0, bias=False), nn.Sigmoid()])
def forward(self, x, v=False):
# if v:
# print(f"check 0 {(torch.isnan(x) * 1.).mean()}")
# weight = self.main[0](x)
# if v: print(f"check 1 {(torch.isnan(weight) * 1.).mean()}")
# weight = self.main[1](weight)
# if v: print(f"check 2 {(torch.isnan(weight) * 1.).mean()}")
# weight = self.main[2](weight)
# if v: print(f"check 3 {(torch.isnan(weight) * 1.).mean()}")
# weight = self.main[3](weight)
# if v: print(f"check 4 {(torch.isnan(weight) * 1.).mean()}")
weight = x
for module in self.main:
weight = module(weight)
weight = sparse_ch(weight, 0.2)
return x * weight
class TopKLayer(nn.Module):
def __init__(self, topk=0.1, revert=False, topk_tau=0., topk_decay_method='', topk_decay_ramp=1e+5, permutate=0, take_se_channel=0, ch_in=-1, activation=""):
super(TopKLayer, self).__init__()
self.revert=revert
self.topk=1.
self.target_topk = topk
self.topk_decay_method = topk_decay_method
self.topk_decay_ramp = topk_decay_ramp
self.activation = activation
# print(f"topk_decay_ramp {topk_decay_ramp}")
if self.topk_decay_method != "":
self.register_buffer('topk_decay_clock', torch.Tensor([0.]))
self.topk_tau = topk_tau
self.permutate = permutate
self.take_se_channel = take_se_channel and (ch_in > 0)
if self.take_se_channel:
self.senet = SEBlock(ch_in, ch_in)
if self.topk_tau > 1: self.topk_tau = 1.
if self.topk_tau < 0: self.topk_tau = 0.
"""
the BigGAN teaser is achieved via the following file:
/lab_data/leelab/tianqinl/BigGAN-PyTorch/scripts/1percent/launch_BigGAN_bs64_ch64_mirrorE_sparse_spread.sh
--sparsity_resolution 8_16_32_64 --sparsity_ratio 1_1_1_1 \
tau = min(iter_num * self.sparse_decay_rate, 1) -> basically
sparse_x = mask * x_reshape
sparsity_x = 1.0 - torch.where(sparse_x == 0.0)[0].shape[0] / (n * c * h * w)
print("sparsity -- ({}): {}".format((n, c, h, w), sparsity_x)) ## around 9% decrease to 4% fired eventually this way
if tau == 1.0:
return sparse_x.view(n, c, h, w)
# print("--- tau", tau)
tau_x = x * torch.FloatTensor([1. - tau]).to(device)
# print("sum of x used", tau_x.sum())
return sparse_x.view(n, c, h, w) * torch.FloatTensor([tau]).to(device) + tau_x
So basically 95% original activation and 5% topk activation, so you emphasis the topk
this translate to topk_tau -> 0.95
"""
def topk_decay_step(self):
if self.training and self.topk_decay_method:
self.topk_decay_clock += 1
if not self.topk_decay_method:
self.topk = max(0, min(1., self.target_topk))
elif self.topk_decay_method == 'exp':
self.topk = max(self.target_topk, self.topk * 0.99)
elif self.topk_decay_method == 'cosine':
eta_min = max(0, min(1., self.target_topk))
self.topk = eta_min + (1. - eta_min) * (
1 + math.cos(math.pi * min(1, self.topk_decay_clock / self.topk_decay_ramp))) / 2
# print(f"current self.topk {self.topk}")
def get_current_tau(self, tau):
if tau is None:
tau = self.topk_tau
else:
# control tau
if tau < 0:
tau = 0.
if tau > 1.:
tau = 1.
return tau
def sparse_hw(self, x, topk, tau=None):
tau = self.get_current_tau(tau)
# self.prev_x = x.abs().mean()
n, c, h, w = x.shape
topk_keep_num = int(max(1, topk * h * w))
if topk == 1 or tau == 1. or (topk_keep_num == h * w):
return x
x_reshape = x.view(n, c, h * w)
_, index = torch.topk(x_reshape.abs(), topk_keep_num, dim=2)
if self.revert:
assert self.training
mask = (torch.ones_like(x_reshape) - torch.zeros_like(x_reshape).scatter_(2, index, 1))
else:
mask = torch.zeros_like(x_reshape).scatter_(2, index, 1)
# print("mask percent: ", mask.mean().item())
sparse_x = mask * x_reshape
# print("sum of x used", tau_x.sum())
sparse_x = sparse_x.view(n, c, h, w)
self.sparse_x = sparse_x
# combine with tau - linear interpolation
if tau == 0:
return sparse_x
elif tau > 0:
return torch.ones_like(x) * tau * x + torch.ones_like(sparse_x) * (1 - tau) * sparse_x
def permutate_non_topk(self, x, topk):
n, c, h, w = x.shape
topk_keep_num = int(max(1, topk * h * w))
if topk == 1 or (topk_keep_num == h * w):
return x
x_reshape = x.view(n, c, h * w)
# permutate the non-zero entry of the activation
non_topk_value, non_topk_index = torch.topk(-x_reshape.abs(), x_reshape.shape[2] - topk_keep_num, dim=2)
non_topk_value_shape = non_topk_value.shape
if self.training: # permutate if training
non_topk_value_ = non_topk_value[:, :, torch.randperm(non_topk_value_shape[2])]
non_topk_value = non_topk_value_ * 0.5 + non_topk_value * 0.5
# reconstruct the non topk back
non_topk_permutate_reshape = torch.zeros_like(x_reshape).scatter_(2, non_topk_index, non_topk_value)
non_topk_permutate = non_topk_permutate_reshape.reshape(n, c, h, w)
return non_topk_permutate
def take_se_channel_func(self, x):
n, c, h, w = x.shape
# x = x.mean(1).unsqueeze(1).repeat(1, c, 1, 1)
# print(f"senet")
x = self.senet(x)
return x
def forward(self, x):
if not self.training:
self.original_x = copy(x)
sparse_x = self.sparse_hw(x, self.topk)
if not self.training:
self.sparse_x = sparse_x
return sparse_x
self.topk_decay_step()
# print(f"self.topk {self.topk}")
if self.activation == "x3":
n, c, h, w = x.shape
temp = 10.
# max_x = x.max()
# min_x = x.min()
x = torch.softmax(x.reshape(n, c, h * w) / temp, -1).reshape(n, c, h, w)
# # normalize it?
# x = torch.clamp(x, min=min_x.item(), max=max_x.item())
# pass
topk_x = self.sparse_hw(x, self.topk, tau=None)
if self.take_se_channel:
topk_x = self.take_se_channel_func(topk_x)
if self.permutate > 0:
assert self.revert == False
# with torch.no_grad():
perm_non_topk_x = self.permutate_non_topk(x, self.topk)
return topk_x + perm_non_topk_x # currently using random as inference
else:
return topk_x
def alexnet_5layer(topk, pretrained=True, topk_tau=0., permutate=0, **kwags): #take_mean_channel
alexnet = models.alexnet(pretrained=pretrained)
# resnet50 = torch.hub.load("pytorch/vision", "alexnet", weights="IMAGENET1K_V2")
new_features = nn.Sequential(
# layers up to the point of insertion
*(list(alexnet.features.children())[:3]),
TopKLayer(topk, topk_tau=topk_tau, permutate=permutate, ch_in=64, **kwags),
*(list(alexnet.features.children())[3:6]),
TopKLayer(topk, topk_tau=topk_tau, permutate=permutate, ch_in=192, **kwags),
*(list(alexnet.features.children())[6:8]),
TopKLayer(topk, topk_tau=topk_tau, permutate=permutate, ch_in=384, **kwags),
*(list(alexnet.features.children())[8:10]),
TopKLayer(topk, topk_tau=topk_tau, permutate=permutate, ch_in=256, **kwags),
*(list(alexnet.features.children())[10:]),
TopKLayer(topk, topk_tau=topk_tau, permutate=permutate, ch_in=256, **kwags),
)
alexnet.features = new_features
model = alexnet
return model
def alexnet_2layer(topk, pretrained=True, topk_tau=0., permutate=0):
alexnet = models.alexnet(pretrained=pretrained)
new_features = nn.Sequential(
# layers up to the point of insertion
*(list(alexnet.features.children())[:3]),
*(list(alexnet.features.children())[3:6]),
TopKLayer(topk, topk_tau=topk_tau, permutate=permutate),
*(list(alexnet.features.children())[6:8]),
TopKLayer(topk, topk_tau=topk_tau, permutate=permutate),
*(list(alexnet.features.children())[8:10]),
*(list(alexnet.features.children())[10:]),
)
alexnet.features = new_features
model = alexnet
return model
def alexnet_1layer(topk, pretrained=True, topk_tau=0., permutate=0):
alexnet = models.alexnet(pretrained=pretrained)
new_features = nn.Sequential(
# layers up to the point of insertion
*(list(alexnet.features.children())[:3]),
*(list(alexnet.features.children())[3:6]),
*(list(alexnet.features.children())[6:8]),
TopKLayer(topk, topk_tau=topk_tau, permutate=permutate),
*(list(alexnet.features.children())[8:10]),
*(list(alexnet.features.children())[10:]),
)
alexnet.features = new_features
model = alexnet
return model
# ensemble
class EnsembleAlexNet5layerTopK(nn.Module):
def __init__(self, topk, feature_dim=6*6*256, num_classes: int = 1000, dropout: float = 0.5) -> None:
super(EnsembleAlexNet5layerTopK, self).__init__()
self.topk = topk
alexnet_topk = models.alexnet(pretrained=True)
self.feature_topk = torch.nn.Sequential(
# layers up to the point of insertion
*(list(alexnet_topk.features.children())[:3]),
TopKLayer(topk),
*(list(alexnet_topk.features.children())[3:6]),
TopKLayer(topk),
*(list(alexnet_topk.features.children())[6:8]),
TopKLayer(topk),
*(list(alexnet_topk.features.children())[8:10]),
TopKLayer(topk),
*(list(alexnet_topk.features.children())[10:]),
TopKLayer(topk),
alexnet_topk.avgpool,
)
alexnet_normal = models.alexnet(pretrained=True)
self.feature_normal = torch.nn.Sequential(
alexnet_normal.features,
alexnet_normal.avgpool
)
self.head = torch.nn.Sequential(
nn.Dropout(p=dropout),
nn.Linear(feature_dim * 2, 4096),
nn.ReLU(inplace=True),
nn.Dropout(p=dropout),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
def forward(self, x):
bz, c, h, w = x.shape
x1 = self.feature_topk(x)
x1 = torch.flatten(x1, 1)
x2 = self.feature_normal(x)
x2 = torch.flatten(x2, 1)
x = torch.cat([x1, x2], dim=1) # bz, feature_dim * 2
x = self.head(x)
return x
def topK_VGG_5layers(topk, topk_tau=0., pretrained=False, permutate=0.):
vgg16 = models.vgg16(pretrained=pretrained)
new_features = nn.Sequential(
# layers up to the point of insertion
*(list(vgg16.features.children())[:5]), # 4 is MaxPool2d
TopKLayer(topk, topk_tau=topk_tau, permutate=permutate),
*(list(vgg16.features.children())[5:10]),
TopKLayer(topk, topk_tau=topk_tau, permutate=permutate),
*(list(vgg16.features.children())[10:17]),
TopKLayer(topk, topk_tau=topk_tau, permutate=permutate),
*(list(vgg16.features.children())[17:24]),
TopKLayer(topk, topk_tau=topk_tau, permutate=permutate),
*(list(vgg16.features.children())[24:]),
TopKLayer(topk, topk_tau=topk_tau, permutate=permutate),
)
vgg16.features = new_features
return vgg16
def topK_resnet50(topk, topk_tau=0., pretrained=False, permutate=0., **kwags):
# resnet50 = models.resnet50(pretrained=pretrained)
resnet50 = torch.hub.load("pytorch/vision", "resnet50", weights="IMAGENET1K_V2")
for name, module in resnet50.named_children():
if name in ['layer1', 'layer2', 'layer3','layer4']:
new_module = nn.Sequential(
module,
TopKLayer(topk, **kwags),
)
setattr(resnet50, name, new_module)
print("Using resnet50 4topk layers")
model = resnet50
return model
def topK_resnet50_1layer(topk, topk_tau=0., pretrained=False, permutate=0., **kwags):
resnet50 = torch.hub.load("pytorch/vision", "resnet50", weights="IMAGENET1K_V2")
for name, module in resnet50.named_children():
if name in ['layer1']:
new_module = nn.Sequential(
module,
TopKLayer(topk, **kwags),
)
setattr(resnet50, name, new_module)
print("Using resnet50 1topk layers")
model = resnet50
return model
def topK_resnet50_2layers(topk, topk_tau=0., pretrained=False, permutate=0., **kwags):
resnet50 = torch.hub.load("pytorch/vision", "resnet50", weights="IMAGENET1K_V2")
for name, module in resnet50.named_children():
if name in ['layer1', 'layer2']:
new_module = nn.Sequential(
module,
TopKLayer(topk, **kwags),
)
setattr(resnet50, name, new_module)
print("Using resnet50 1topk layers")
model = resnet50
return model
def topK_resnet18(topk, topk_tau=0., pretrained=False, permutate=0., **kwags):
resnet18 = models.resnet18(pretrained=False)
for name, module in resnet18.named_children():
if name in ['layer1', 'layer2', 'layer3','layer4']:
new_module = nn.Sequential(
module,
TopKLayer(topk),
)
setattr(resnet18, name, new_module)
print("Using resnet18 4topk layers")
model = resnet18
return model