forked from mdrokz/rust-llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbinding.cpp
2144 lines (1884 loc) · 96.4 KB
/
binding.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "common.h"
#include "llama.h"
#include "train.h"
// #include "ggml.h"
#include "binding.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include <sstream>
#include <regex>
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include <windows.h>
#include <signal.h>
#endif
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) || defined(_WIN32)
void sigint_handler(int signo)
{
if (signo == SIGINT)
{
_exit(130);
}
}
#endif
static std::string llama_token_to_str(const struct llama_context * ctx, llama_token token) {
std::vector<char> result(8, 0);
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
}
return std::string(result.data(), result.size());
}
int get_embeddings(void *params_ptr, void *state_pr, float *res_embeddings)
{
gpt_params *params_p = (gpt_params *)params_ptr;
llama_context *ctx = (llama_context *)state_pr;
gpt_params params = *params_p;
if (params_p->seed <= 0)
{
params_p->seed = time(NULL);
}
std::mt19937 rng(params_p->seed);
llama_backend_init(params_p->numa);
int n_past = 0;
// Add a space in front of the first character to match OG llama tokenizer behavior
params_p->prompt.insert(0, 1, ' ');
// tokenize the prompt
auto embd_inp = ::llama_tokenize(ctx, params_p->prompt, true);
// determine newline token
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
if (embd_inp.size() > 0)
{
if (llama_eval(ctx, embd_inp.data(), embd_inp.size(), n_past))
{
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
}
const llama_model *model = llama_get_model(ctx);
const int n_embd = llama_n_embd(model);
const auto embeddings = llama_get_embeddings(ctx);
for (int i = 0; i < n_embd; i++)
{
res_embeddings[i] = embeddings[i];
}
return 0;
}
int get_token_embeddings(void *params_ptr, void *state_pr, int *tokens, int tokenSize, float *res_embeddings)
{
gpt_params *params_p = (gpt_params *)params_ptr;
llama_context *ctx = (llama_context *)state_pr;
gpt_params params = *params_p;
for (int i = 0; i < tokenSize; i++)
{
auto token_str = llama_token_to_str(ctx, tokens[i]);
if (token_str.empty())
{
continue;
}
params_p->prompt += token_str;
}
return get_embeddings(params_ptr, state_pr, res_embeddings);
}
int eval(void *params_ptr, void *state_pr, char *text)
{
gpt_params *params_p = (gpt_params *)params_ptr;
llama_context *ctx = (llama_context *)state_pr;
auto n_past = 0;
auto last_n_tokens_data = std::vector<llama_token>(params_p->repeat_last_n, 0);
auto tokens = std::vector<llama_token>(params_p->n_ctx);
auto n_prompt_tokens = llama_tokenize(llama_get_model(ctx), text, strlen(text), tokens.data(), tokens.size(), true);
if (n_prompt_tokens < 1)
{
fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
return 1;
}
// evaluate prompt
return llama_eval(ctx, tokens.data(), n_prompt_tokens, n_past);
}
int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug)
{
gpt_params *params_p = (gpt_params *)params_ptr;
llama_context *ctx = (llama_context *)state_pr;
llama_set_n_threads(ctx, params_p->n_threads, params_p->n_threads_batch);
const int n_ctx = llama_n_ctx(ctx);
if (params_p->seed <= 0)
{
params_p->seed = time(NULL);
}
std::mt19937 rng(params_p->seed);
// print input
if (debug)
{
fprintf(stderr, "%s: input: %s\n", __func__, params_p->prompt.c_str());
}
std::string path_session = params_p->path_prompt_cache;
std::vector<llama_token> session_tokens;
if (!path_session.empty())
{
if (debug)
{
fprintf(stderr, "%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
}
// fopen to check for existing session
FILE *fp = std::fopen(path_session.c_str(), "rb");
if (fp != NULL)
{
std::fclose(fp);
session_tokens.resize(n_ctx);
size_t n_token_count_out = 0;
if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out))
{
fprintf(stderr, "%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
return 1;
}
session_tokens.resize(n_token_count_out);
llama_set_rng_seed(ctx, params_p->seed);
if (debug)
{
fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size());
}
}
else
{
if (debug)
{
fprintf(stderr, "%s: session file does not exist, will create\n", __func__);
}
}
}
std::vector<llama_token> embd_inp;
if (!params_p->prompt.empty() || session_tokens.empty())
{
// Add a space in front of the first character to match OG llama tokenizer behavior
params_p->prompt.insert(0, 1, ' ');
embd_inp = ::llama_tokenize(ctx, params_p->prompt, true);
}
else
{
embd_inp = session_tokens;
}
// debug message about similarity of saved session, if applicable
size_t n_matching_session_tokens = 0;
if (session_tokens.size())
{
for (llama_token id : session_tokens)
{
if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens])
{
break;
}
n_matching_session_tokens++;
}
if (debug)
{
if (params_p->prompt.empty() && n_matching_session_tokens == embd_inp.size())
{
fprintf(stderr, "%s: using full prompt from session file\n", __func__);
}
else if (n_matching_session_tokens >= embd_inp.size())
{
fprintf(stderr, "%s: session file has exact match for prompt!\n", __func__);
}
else if (n_matching_session_tokens < (embd_inp.size() / 2))
{
fprintf(stderr, "%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
__func__, n_matching_session_tokens, embd_inp.size());
}
else
{
fprintf(stderr, "%s: session file matches %zu / %zu tokens of prompt\n",
__func__, n_matching_session_tokens, embd_inp.size());
}
}
}
// if we will use the cache for the full prompt without reaching the end of the cache, force
// reevaluation of the last token token to recalculate the cached logits
if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() &&
session_tokens.size() > embd_inp.size())
{
session_tokens.resize(embd_inp.size() - 1);
}
// number of tokens to keep when resetting context
if (params_p->n_keep < 0 || params_p->n_keep > (int)embd_inp.size())
{
params_p->n_keep = (int)embd_inp.size();
}
// determine newline token
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
// TODO: replace with ring-buffer
std::vector<llama_token> last_n_tokens(n_ctx);
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size();
int n_past = 0;
int n_remain = params_p->n_predict;
int n_consumed = 0;
int n_session_consumed = 0;
std::vector<llama_token> embd;
std::string res = "";
// do one empty run to warm up the model
{
llama_token tmp[1] = {
llama_token_bos(ctx),
};
llama_eval(ctx, tmp, 1, 0);
llama_reset_timings(ctx);
}
while (n_remain != 0)
{
// predict
if (embd.size() > 0)
{
// infinite text generation via context swapping
// if we run out of context:
// - take the n_keep first tokens from the original prompt (via n_past)
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
if (n_past + (int)embd.size() > n_ctx)
{
const int n_left = n_past - params_p->n_keep;
// always keep the first token - BOS
n_past = std::max(1, params_p->n_keep);
// insert n_left/2 tokens at the start of embd from last_n_tokens
embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left / 2 - embd.size(), last_n_tokens.end() - embd.size());
// stop saving session if we run out of context
path_session.clear();
// printf("\n---\n");
// printf("resetting: '");
// for (int i = 0; i < (int) embd.size(); i++) {
// printf("%s", llama_token_to_str(ctx, embd[i]));
// }
// printf("'\n");
// printf("\n---\n");
}
// try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
if (n_session_consumed < (int)session_tokens.size())
{
size_t i = 0;
for (; i < embd.size(); i++)
{
if (embd[i] != session_tokens[n_session_consumed])
{
session_tokens.resize(n_session_consumed);
break;
}
n_past++;
n_session_consumed++;
if (n_session_consumed >= (int)session_tokens.size())
{
++i;
break;
}
}
if (i > 0)
{
embd.erase(embd.begin(), embd.begin() + i);
}
}
// evaluate tokens in batches
// embd is typically prepared beforehand to fit within a batch, but not always
for (int i = 0; i < (int)embd.size(); i += params_p->n_batch)
{
int n_eval = (int)embd.size() - i;
if (n_eval > params_p->n_batch)
{
n_eval = params_p->n_batch;
}
if (llama_eval(ctx, &embd[i], n_eval, n_past))
{
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
n_past += n_eval;
}
if (embd.size() > 0 && !path_session.empty())
{
session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
n_session_consumed = session_tokens.size();
}
}
embd.clear();
if ((int)embd_inp.size() <= n_consumed)
{
// out of user input, sample next token
const float temp = params_p->temp;
const int32_t top_k = params_p->top_k <= 0 ? llama_n_vocab(llama_get_model(ctx)) : params_p->top_k;
const float top_p = params_p->top_p;
const float tfs_z = params_p->tfs_z;
const float typical_p = params_p->typical_p;
const int32_t repeat_last_n = params_p->repeat_last_n < 0 ? n_ctx : params_p->repeat_last_n;
const float repeat_penalty = params_p->repeat_penalty;
const float alpha_presence = params_p->presence_penalty;
const float alpha_frequency = params_p->frequency_penalty;
const int mirostat = params_p->mirostat;
const float mirostat_tau = params_p->mirostat_tau;
const float mirostat_eta = params_p->mirostat_eta;
const bool penalize_nl = params_p->penalize_nl;
// optionally save the session on first sample (for faster prompt loading next time)
if (!path_session.empty() && need_to_save_session && !params_p->prompt_cache_ro)
{
need_to_save_session = false;
llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
}
llama_token id = 0;
{
auto logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(llama_get_model(ctx));
// Apply params_p->logit_bias map
for (auto it = params_p->logit_bias.begin(); it != params_p->logit_bias.end(); it++)
{
logits[it->first] += it->second;
}
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++)
{
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};
// Apply penalties
float nl_logit = logits[llama_token_nl(ctx)];
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
llama_sample_repetition_penalty(ctx, &candidates_p,
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
last_n_repeat, repeat_penalty);
llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
last_n_repeat, alpha_frequency, alpha_presence);
if (!penalize_nl)
{
logits[llama_token_nl(ctx)] = nl_logit;
}
if (temp <= 0)
{
// Greedy sampling
id = llama_sample_token_greedy(ctx, &candidates_p);
}
else
{
if (mirostat == 1)
{
static float mirostat_mu = 2.0f * mirostat_tau;
const int mirostat_m = 100;
llama_sample_temperature(ctx, &candidates_p, temp);
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
}
else if (mirostat == 2)
{
static float mirostat_mu = 2.0f * mirostat_tau;
llama_sample_temperature(ctx, &candidates_p, temp);
id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
}
else
{
// Temperature sampling
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
llama_sample_typical(ctx, &candidates_p, typical_p, 1);
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
llama_sample_temperature(ctx, &candidates_p, temp);
id = llama_sample_token(ctx, &candidates_p);
}
}
// printf("`%d`", candidates_p.size);
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(id);
}
// add it to the context
embd.push_back(id);
// decrement remaining sampling budget
--n_remain;
// call the token callback, no need to check if one is actually registered, that will
// be handled on the Go side.
auto token_str = llama_token_to_str(ctx, id);
if (!tokenCallback(state_pr, (char*)token_str.c_str()))
{
break;
}
}
else
{
// some user input remains from prompt or interaction, forward it to processing
while ((int)embd_inp.size() > n_consumed)
{
embd.push_back(embd_inp[n_consumed]);
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(embd_inp[n_consumed]);
++n_consumed;
if ((int)embd.size() >= params_p->n_batch)
{
break;
}
}
}
for (auto id : embd)
{
res += llama_token_to_str(ctx, id);
}
// check for stop prompt
if (params_p->antiprompt.size())
{
std::string last_output;
for (auto id : last_n_tokens)
{
last_output += llama_token_to_str(ctx, id);
}
// Check if each of the reverse prompts appears at the end of the output.
for (std::string &antiprompt : params_p->antiprompt)
{
// size_t extra_padding = params_p->interactive ? 0 : 2;
size_t extra_padding = 2;
size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
: 0;
if (last_output.find(antiprompt.c_str(), search_start_pos) != std::string::npos)
{
goto end;
}
}
}
// end of text token
if (!embd.empty() && embd.back() == llama_token_eos(ctx))
{
break;
}
}
if (!path_session.empty() && params_p->prompt_cache_all && !params_p->prompt_cache_ro)
{
if (debug)
{
fprintf(stderr, "\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
}
llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
}
end:
#if defined(_WIN32)
signal(SIGINT, SIG_DFL);
#endif
if (debug)
{
llama_print_timings(ctx);
llama_reset_timings(ctx);
}
strcpy(result, res.c_str());
return 0;
}
void llama_binding_free_model(void *state_ptr)
{
llama_context *ctx = (llama_context *)state_ptr;
llama_free(ctx);
}
void llama_free_params(void *params_ptr)
{
gpt_params *params = (gpt_params *)params_ptr;
delete params;
}
std::vector<std::string> create_vector(const char **strings, int count)
{
std::vector<std::string> *vec = new std::vector<std::string>;
for (int i = 0; i < count; i++)
{
vec->push_back(std::string(strings[i]));
}
return *vec;
}
void delete_vector(std::vector<std::string> *vec)
{
delete vec;
}
int load_state(void *ctx, char *statefile, char *modes)
{
llama_context *state = (llama_context *)ctx;
const llama_context *constState = static_cast<const llama_context *>(state);
const size_t state_size = llama_get_state_size(state);
uint8_t *state_mem = new uint8_t[state_size];
{
FILE *fp_read = fopen(statefile, modes);
if (state_size != llama_get_state_size(constState))
{
fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
return 1;
}
const size_t ret = fread(state_mem, 1, state_size, fp_read);
if (ret != state_size)
{
fprintf(stderr, "\n%s : failed to read state\n", __func__);
return 1;
}
llama_set_state_data(state, state_mem); // could also read directly from memory mapped file
fclose(fp_read);
}
return 0;
}
void save_state(void *ctx, char *dst, char *modes)
{
llama_context *state = (llama_context *)ctx;
const size_t state_size = llama_get_state_size(state);
uint8_t *state_mem = new uint8_t[state_size];
// Save state (rng, logits, embedding and kv_cache) to file
{
FILE *fp_write = fopen(dst, modes);
llama_copy_state_data(state, state_mem); // could also copy directly to memory mapped file
fwrite(state_mem, 1, state_size, fp_write);
fclose(fp_write);
}
}
void *llama_allocate_params(const char *prompt, int seed, int threads, int tokens, int top_k,
float top_p, float temp, float repeat_penalty, int repeat_last_n, bool ignore_eos, bool memory_f16, int n_batch, int n_keep, const char **antiprompt, int antiprompt_count,
float tfs_z, float typical_p, float frequency_penalty, float presence_penalty, int mirostat, float mirostat_eta, float mirostat_tau, bool penalize_nl, const char *logit_bias, const char *session_file, bool prompt_cache_all, bool mlock, bool mmap,
const char *maingpu, const char *tensorsplit, bool prompt_cache_ro)
{
gpt_params *params = new gpt_params;
params->seed = seed;
params->n_threads = threads;
params->n_threads_batch = threads;
params->n_predict = tokens;
params->repeat_last_n = repeat_last_n;
params->prompt_cache_ro = prompt_cache_ro;
params->top_k = top_k;
params->top_p = top_p;
params->memory_f16 = memory_f16;
params->temp = temp;
params->use_mmap = mmap;
params->use_mlock = mlock;
params->repeat_penalty = repeat_penalty;
params->n_batch = n_batch;
params->n_keep = n_keep;
if (maingpu[0] != '\0')
{
params->main_gpu = std::stoi(maingpu);
}
if (tensorsplit[0] != '\0')
{
std::string arg_next = tensorsplit;
// split string by , and /
const std::regex regex{R"([,/]+)"};
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i)
{
if (i < split_arg.size())
{
params->tensor_split[i] = std::stof(split_arg[i]);
}
else
{
params->tensor_split[i] = 0.0f;
}
}
}
params->prompt_cache_all = prompt_cache_all;
params->path_prompt_cache = session_file;
/* if (ignore_eos) // TODO: Cannot be set before context is allocated (llama_token_eos requires context access)
{
params->logit_bias[llama_token_eos()] = -INFINITY;
}
*/
if (antiprompt_count > 0)
{
params->antiprompt = create_vector(antiprompt, antiprompt_count);
}
params->tfs_z = tfs_z;
params->typical_p = typical_p;
params->presence_penalty = presence_penalty;
params->mirostat = mirostat;
params->mirostat_eta = mirostat_eta;
params->mirostat_tau = mirostat_tau;
params->penalize_nl = penalize_nl;
std::stringstream ss(logit_bias);
llama_token key;
char sign;
std::string value_str;
if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-'))
{
params->logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
}
params->frequency_penalty = frequency_penalty;
params->prompt = prompt;
return params;
}
void *load_model(const char *fname, int n_ctx, int n_seed, bool memory_f16, bool mlock, bool embeddings, bool mmap, bool low_vram, bool vocab_only, int n_gpu_layers, int n_batch, const char *maingpu, const char *tensorsplit, bool numa)
{
// load the model
auto lparams = llama_context_default_params();
auto mparams = llama_model_default_params();
lparams.n_ctx = n_ctx;
lparams.seed = n_seed;
lparams.f16_kv = memory_f16;
lparams.embedding = embeddings;
mparams.use_mlock = mlock;
mparams.n_gpu_layers = n_gpu_layers;
mparams.use_mmap = mmap;
// mparams.low_vram = low_vram; LOW_VRAM not a thing anymore in the API? verify
mparams.vocab_only = vocab_only;
if (maingpu[0] != '\0')
{
mparams.main_gpu = std::stoi(maingpu);
}
if (tensorsplit[0] != '\0')
{
std::string arg_next = tensorsplit;
// split string by , and /
const std::regex regex{R"([,/]+)"};
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
float *tsplit = (float*)malloc(sizeof(float) * LLAMA_MAX_DEVICES);
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i)
{
if (i < split_arg.size())
{
tsplit[i] = std::stof(split_arg[i]);
}
else
{
tsplit[i] = 0.0f;
}
}
mparams.tensor_split = tsplit;
}
if (n_batch > 0)
lparams.n_batch = n_batch;
llama_backend_init(numa);
void *res = nullptr;
try
{
auto model = llama_load_model_from_file(fname, mparams);
res = llama_new_context_with_model(model, lparams);
}
catch (std::runtime_error &e)
{
fprintf(stderr, "failed %s", e.what());
return res;
}
return res;
}
// //FINETUNE//
// //TODO: we can still extract this for codegen automation by using and include in this file
// void print_params(struct my_llama_hparams * params) {
// printf("%s: n_vocab: %u\n", __func__, params->n_vocab);
// printf("%s: n_ctx: %u\n", __func__, params->n_ctx);
// printf("%s: n_embd: %u\n", __func__, params->n_embd);
// printf("%s: n_ff: %u\n", __func__, params->n_ff);
// printf("%s: n_head: %u\n", __func__, params->n_head);
// printf("%s: n_head_kv: %u\n", __func__, params->n_head_kv);
// printf("%s: n_layer: %u\n", __func__, params->n_layer);
// printf("%s: norm_rms_eps : %f\n", __func__, params->f_norm_rms_eps);
// printf("%s: rope_freq_base : %f\n", __func__, params->rope_freq_base);
// printf("%s: rope_freq_scale : %f\n", __func__, params->rope_freq_scale);
// }
// void print_lora_params(struct my_llama_lora_hparams * params) {
// printf("%s: n_rank_attention_norm : %u\n", __func__, params->n_rank_attention_norm);
// printf("%s: n_rank_wq : %u\n", __func__, params->n_rank_wq);
// printf("%s: n_rank_wk : %u\n", __func__, params->n_rank_wk);
// printf("%s: n_rank_wv : %u\n", __func__, params->n_rank_wv);
// printf("%s: n_rank_wo : %u\n", __func__, params->n_rank_wo);
// printf("%s: n_rank_ffn_norm : %u\n", __func__, params->n_rank_ffn_norm);
// printf("%s: n_rank_w1 : %u\n", __func__, params->n_rank_w1);
// printf("%s: n_rank_w2 : %u\n", __func__, params->n_rank_w2);
// printf("%s: n_rank_w3 : %u\n", __func__, params->n_rank_w3);
// printf("%s: n_rank_tok_embeddings : %u\n", __func__, params->n_rank_tok_embeddings);
// printf("%s: n_rank_norm : %u\n", __func__, params->n_rank_norm);
// printf("%s: n_rank_output : %u\n", __func__, params->n_rank_output);
// }
// #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
// { \
// const std::string skey(key); \
// const int kid = gguf_find_key(ctx, skey.c_str()); \
// if (kid >= 0) { \
// enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
// if (ktype != (type)) { \
// die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \
// } \
// (dst) = func(ctx, kid); \
// } else if (req) { \
// die_fmt("key not found in model: %s", skey.c_str()); \
// } \
// }
// // void load_model_hparams_gguf(struct gguf_context * ctx, struct my_llama_hparams * hparams, const char * expected_arch) {
// void load_model_hparams_gguf(gguf_context * ctx, struct my_llama_hparams * hparams, const char * expected_arch) {
// std::string arch;
// GGUF_GET_KEY(ctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE);
// if (expected_arch != NULL) {
// if (arch != expected_arch) {
// printf("%s: arch=%s expected_arch=%s\n", __func__, arch.c_str(), expected_arch);
// }
// GGML_ASSERT(arch == expected_arch);
// }
// std::vector<char> keybuf;
// keybuf.resize(512);
// auto kv = [&arch, &keybuf](const char * key) -> const char * {
// snprintf(keybuf.data(), keybuf.size(), key, arch.c_str());
// return keybuf.data();
// };
// GGUF_GET_KEY(ctx, hparams->n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
// GGUF_GET_KEY(ctx, hparams->n_ctx, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_CONTEXT_LENGTH));
// GGUF_GET_KEY(ctx, hparams->n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
// GGUF_GET_KEY(ctx, hparams->n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
// GGUF_GET_KEY(ctx, hparams->n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
// // n_head_kv is optional, default to n_head
// hparams->n_head_kv = hparams->n_head;
// GGUF_GET_KEY(ctx, hparams->n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV));
// float rope_freq_scale = 1.0f;
// GGUF_GET_KEY(ctx, hparams->f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
// GGUF_GET_KEY(ctx, hparams->rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
// GGUF_GET_KEY(ctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
// if (rope_freq_scale != 1.0f) {
// hparams->rope_freq_scale = 1.0f / rope_freq_scale;
// }
// }
// //CPP struct methods to C function conversions:
// uint32_t llama_hparam_n_gqa(struct my_llama_hparams * hparams) {
// return hparams->n_head/hparams->n_head_kv;
// }
// uint32_t llama_hparam_n_embd_head(struct my_llama_hparams * hparams) {
// return hparams->n_embd/hparams->n_head;
// }
// uint32_t llama_hparam_n_embd_gqa(struct my_llama_hparams * hparams) {
// return hparams->n_embd/llama_hparam_n_gqa(hparams);
// }
// bool llama_hparam_neq(struct my_llama_hparams * hparams, struct my_llama_hparams * other) {
// return memcmp(hparams, other, sizeof(*other));
// }
// //End of CPP struct methods to C function conversions
// void init_model(struct llama_model * input, struct my_llama_model * model, const char * fn_model, uint32_t n_ctx) {
// auto & hparams = model->hparams;
// std::vector<char> tn_buf;
// tn_buf.resize(GGML_MAX_NAME);
// auto tn = [&tn_buf](const char * key) -> const char * {
// snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
// return tn_buf.data();
// };
// auto tni = [&tn_buf](const char * key, int bid) -> const char * {
// snprintf(tn_buf.data(), tn_buf.size(), key, bid);
// std::string s = tn_buf.data();
// snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
// return tn_buf.data();
// };
// // get parameters directly from gguf file
// {
// struct gguf_init_params params = {
// /*.no_alloc = */ false,
// /*.ctx = */ NULL,
// };
// struct gguf_context * mctx = gguf_init_from_file(fn_model, params);
// load_model_hparams_gguf(mctx, &hparams, "llama");
// gguf_free(mctx);
// }
// hparams.n_vocab = llama_n_vocab(input);
// hparams.n_ctx = n_ctx;
// // get tensors from llama_model (possibly mmapped)
// model->tok_embeddings = llama_get_model_tensor(input, tn(LLM_TENSOR_TOKEN_EMBD));
// model->norm = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT_NORM));
// model->output = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT));
// assert_shape_2d(model->tok_embeddings, hparams.n_embd, hparams.n_vocab);
// assert_shape_1d(model->norm, hparams.n_embd);
// assert_shape_2d(model->output, hparams.n_embd, hparams.n_vocab);
// //model->layers.resize(hparams.n_layer);
// //instead of using a vector we will use a pointer to an array
// if (model->layers == NULL){
// model->layers = (struct my_llama_layer *)malloc(sizeof(struct my_llama_layer) * hparams.n_layer);
// }else {
// free(model->layers);
// model->layers = (struct my_llama_layer *)malloc(sizeof(struct my_llama_layer) * hparams.n_layer);
// }
// for (uint32_t i = 0; i < hparams.n_layer; ++i) {
// //TODO: since this vector is addressed as a strided offset lets see if we can spoof it as an array
// auto & layer = model->layers[i];
// layer.attention_norm = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_NORM, i));
// layer.wq = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_Q, i));
// layer.wk = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_K, i));
// layer.wv = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_V, i));
// layer.wo = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_OUT, i));
// layer.ffn_norm = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_NORM, i));
// layer.w1 = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_GATE, i));
// layer.w2 = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_DOWN, i));
// layer.w3 = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_UP, i));
// assert_shape_1d(layer.attention_norm, hparams.n_embd);
// assert_shape_2d(layer.wq, hparams.n_embd, hparams.n_embd);
// //TODO: need to rework to C style.. its like someone wrote good C code then fucked it up for the pedantic claim of cpp
// assert_shape_2d(layer.wk, hparams.n_embd, llama_hparam_n_embd_gqa(&hparams));
// assert_shape_2d(layer.wv, hparams.n_embd, llama_hparam_n_embd_gqa(&hparams));
// assert_shape_2d(layer.wo, hparams.n_embd, hparams.n_embd);
// assert_shape_1d(layer.ffn_norm, hparams.n_embd);
// assert_shape_2d(layer.w1, hparams.n_embd, hparams.n_ff);
// assert_shape_2d(layer.w2, hparams.n_ff, hparams.n_embd);
// assert_shape_2d(layer.w3, hparams.n_embd, hparams.n_ff);
// }
// }
//////////////////////////TODO: big paste strong induction test//////////////////////////T
//TODO: try just creating a header for finetune.cpp instead of these bindings
// void set_param_lora(struct my_llama_lora * lora) {
// //const uint32_t n_layer = lora->layers.size();
// //layers is an array so generate the equivalent code for an array instead of a vector
// const uint32_t n_layer = sizeof
// struct ggml_context* ctx = lora->ctx;
// ggml_set_param(ctx, lora->tok_embeddings_a);
// ggml_set_param(ctx, lora->tok_embeddings_b);
// ggml_set_param(ctx, lora->norm_a);
// ggml_set_param(ctx, lora->norm_b);
// ggml_set_param(ctx, lora->output_a);
// ggml_set_param(ctx, lora->output_b);
// for (uint32_t i = 0; i < n_layer; ++i) {
// auto & layer = lora->layers[i];
// ggml_set_param(ctx, layer.attention_norm_a);
// ggml_set_param(ctx, layer.attention_norm_b);
// ggml_set_param(ctx, layer.wq_a);
// ggml_set_param(ctx, layer.wq_b);
// ggml_set_param(ctx, layer.wk_a);
// ggml_set_param(ctx, layer.wk_b);
// ggml_set_param(ctx, layer.wv_a);
// ggml_set_param(ctx, layer.wv_b);
// ggml_set_param(ctx, layer.wo_a);
// ggml_set_param(ctx, layer.wo_b);
// ggml_set_param(ctx, layer.ffn_norm_a);
// ggml_set_param(ctx, layer.ffn_norm_b);
// ggml_set_param(ctx, layer.w1_a);
// ggml_set_param(ctx, layer.w1_b);
// ggml_set_param(ctx, layer.w2_a);
// ggml_set_param(ctx, layer.w2_b);
// ggml_set_param(ctx, layer.w3_a);
// ggml_set_param(ctx, layer.w3_b);
// }
// }
// void alloc_lora(struct ggml_allocr * alloc, struct my_llama_lora * lora) {
// ggml_allocr_alloc(alloc, lora->tok_embeddings_a);
// ggml_allocr_alloc(alloc, lora->tok_embeddings_b);
// ggml_allocr_alloc(alloc, lora->norm_a);
// ggml_allocr_alloc(alloc, lora->norm_b);
// ggml_allocr_alloc(alloc, lora->output_a);
// ggml_allocr_alloc(alloc, lora->output_b);
// for (uint32_t i = 0; i < lora->layers.size(); ++i) {