-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
50 lines (41 loc) · 1.48 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
import torch.nn as nn
def patch_first_conv(model, in_channels):
"""Change first convolution layer input channels.
In case:
in_channels == 1 or in_channels == 2 -> reuse original weights
in_channels > 3 -> make random kaiming normal initialization
"""
# get first conv
for module in model.modules():
if isinstance(module, nn.Conv2d):
break
# change input channels for first conv
module.in_channels = in_channels
weight = module.weight.detach()
reset = False
if in_channels == 1:
weight = weight.sum(1, keepdim=True)
elif in_channels == 2:
weight = weight[:, :2] * (3.0 / 2.0)
else:
reset = True
weight = torch.Tensor(
module.out_channels,
module.in_channels // module.groups,
*module.kernel_size
)
module.weight = nn.parameter.Parameter(weight)
if reset:
module.reset_parameters()
def replace_strides_with_dilation(module, dilation_rate):
"""Patch Conv2d modules replacing strides with dilation"""
for mod in module.modules():
if isinstance(mod, nn.Conv2d):
mod.stride = (1, 1)
mod.dilation = (dilation_rate, dilation_rate)
kh, kw = mod.kernel_size
mod.padding = ((kh // 2) * dilation_rate, (kh // 2) * dilation_rate)
# Kostyl for EfficientNet
if hasattr(mod, "static_padding"):
mod.static_padding = nn.Identity()