-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
226 lines (187 loc) · 8.32 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from pan_regnety120 import PAN
import torch
import argparse
import logging
import os
import sys
import cv2
from baal.bayesian import MCDropoutConnectModule
from matplotlib import pyplot as plt
import numpy as np
import torch
import torch.nn as nn
from torch import optim
from tqdm import tqdm
import torchvision
from eval import eval_net
from visualize import visualize_to_tensorboard
from torch.utils.tensorboard import SummaryWriter
from dataset import BasicDataset
from torch.utils.data import DataLoader, random_split
import segmentation_models_pytorch as smp
global val_iou_score
global best_val_iou_score
global best_test_iou_score
val_iou_score = 0.
best_val_iou_score = 0.
best_test_iou_score = 0.
# ailab
dir_img = "/data.local/all/hangd/dynamic_data/imgs/"
dir_mask = '/data.local/all/hangd/dynamic_data/masks/'
dir_img_test = '/data.local/all/hangd/src_code_3/Pytorch-UNet/data_test/imgs/'
dir_mask_test = '/data.local/all/hangd/src_code_3/Pytorch-UNet/data_test/masks/'
def train_net(
dir_checkpoint,
n_classes,
bilinear,
n_channels,
device,
epochs=30,
val_percent=0.1,
save_cp=True,
img_scale=1):
global best_val_iou_score
global best_test_iou_score
net = PAN()
# net = smp.Unet(
# encoder_name='timm-regnety_120', # choose encoder, e.g. mobilenet_v2 or efficientnet-b7
# encoder_weights=None, # use `imagenet` pretrained weights for encoder initialization
# in_channels=3, # model input channels (1 for grayscale images, 3 for RGB, etc.)
# classes=1, # model output channels (number of classes in your dataset)
# )
net.to(device=device)
dataset = BasicDataset(dir_img, dir_mask, img_scale)
data_test = BasicDataset(imgs_dir=dir_img_test, masks_dir=dir_mask_test, train=False, scale=img_scale)
batch_size = 4
train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True)
test_loader = DataLoader(data_test, batch_size=batch_size, shuffle=False, num_workers=2, pin_memory=True,drop_last=True)
lr = 1e-5
writer = SummaryWriter(comment=f'_{net.__class__.__name__}_LR_{lr}_BS_{batch_size}_SCALE_{img_scale}')
global_step = 0
logging.info(f'''Starting training:
Epochs: {epochs}
Batch size: {batch_size}
Learning rate: {lr}
Checkpoints: {save_cp}
Device: {device.type}
Images scaling: {img_scale}
''')
optimizer = optim.RMSprop(net.parameters(), lr=lr, weight_decay=1e-8, momentum=0.9)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min' if n_classes > 1 else 'max', patience=2)
if n_classes > 1:
criterion = nn.CrossEntropyLoss()
else:
criterion = nn.BCEWithLogitsLoss()
for epoch in range(epochs):
net.train()
epoch_loss = 0
n_train = len(dataset)
with tqdm(total=n_train, desc=f'Epoch {epoch + 1}/{epochs}', unit='img') as pbar:
for batch in train_loader:
imgs = batch['image']
true_masks = batch['mask']
assert imgs.shape[1] == n_channels, \
f'Network has been defined with {n_channels} input channels, ' \
f'but loaded images have {imgs.shape[1]} channels. Please check that ' \
'the images are loaded correctly.'
imgs = imgs.to(device=device, dtype=torch.float32)
mask_type = torch.float32 if n_classes == 1 else torch.long
true_masks = true_masks.to(device=device, dtype=mask_type)
masks_pred = net(imgs) # return BCHW = 8_1_256_256
_tem = net(imgs)
# print("IS DIFFERENT OR NOT: ", torch.sum(masks_pred - _tem))
true_masks = true_masks[:, :1, :, :]
loss = criterion(masks_pred, true_masks)
epoch_loss += loss.item()
# writer.add_scalar('Loss/train', loss.item(), global_step)
pbar.set_postfix(**{'loss (batch)': loss.item()})
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_value_(net.parameters(), 0.1)
optimizer.step()
pbar.update(imgs.shape[0])
global_step += 1
# Tính dice và iou score trên tập Test set, ghi vào tensorboard .
test_score_dice, test_score_iou = eval_net(net, test_loader, n_classes, device)
if test_score_iou > best_test_iou_score:
best_test_iou_score = test_score_iou
try:
os.mkdir(dir_checkpoint)
logging.info('Created checkpoint directory')
except OSError:
pass
torch.save(net.state_dict(),
dir_checkpoint + f'best_CP_epoch{epoch + 1}.pth')
logging.info(f'Checkpoint {epoch + 1} saved !')
logging.info('Test Dice Coeff: {}'.format(test_score_dice))
print('Test Dice Coeff: {}'.format(test_score_dice))
writer.add_scalar('Dice/test', test_score_dice, epoch)
logging.info('Test IOU : {}'.format(test_score_iou))
print('Test IOU : {}'.format(test_score_iou))
writer.add_scalar('IOU/test', test_score_iou, epoch)
print("best iou: ", best_test_iou_score)
# save_cp = True
# if save_cp:
# try:
# os.mkdir(dir_checkpoint)
# logging.info('Created checkpoint directory')
# except OSError:
# pass
# torch.save(net.state_dict(),
# dir_checkpoint + f'CP_epoch{epoch + 1}.pth')
# logging.info(f'Checkpoint {epoch + 1} saved !')
# nni.report_final_result(best_test_iou_score) # _____________________________nni
# writer.close()
def get_args():
parser = argparse.ArgumentParser(description='Train the UNet on images and target masks',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-m', '--method', dest='method', type=str, default='i',
help='Choose dropout method: i for MCdropout ; w for Dropconnect')
parser.add_argument('-cuda', '--cuda-inx', type=int, nargs='?', default=0,
help='index of cuda', dest='cuda_inx')
parser.add_argument('-e', '--epochs', metavar='E', type=int, default=30,
help='Number of epochs', dest='epochs')
parser.add_argument('-b', '--batch-size', metavar='B', type=int, nargs='?', default=4,
help='Batch size', dest='batchsize')
parser.add_argument('-lr', '--learning-rate', metavar='LR', type=float, nargs='?', default=0.00001,
help='Learning rate', dest='lr')
parser.add_argument('-f', '--load', dest='load', type=str, default=False,
help='Load model from a .pth file')
parser.add_argument('-s', '--scale', dest='scale', type=float, default=1,
help='Downscaling factor of the images')
parser.add_argument('-v', '--validation', dest='val', type=float, default=10.0,
help='Percent of the data that is used as validation (0-100)')
return parser.parse_args()
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
args = get_args()
dir_ckp = "/data.local/all/hangd/v1/uncertainty1/"
if torch.cuda.is_available():
_device = 'cuda:' + str(args.cuda_inx)
else:
_device = 'cpu'
device = torch.device(_device)
logging.info(f'Using device {device}')
n_classes = 1
n_channels = 3
bilinear = True
logging.info(f'Network:\n'
f'\t{n_channels} input channels\n'
f'\t{n_classes} output channels (classes)\n'
f'\t{"Bilinear" if bilinear else "Transposed conv"} upscaling')
# For a specific architecture
try:
train_net(dir_checkpoint=dir_ckp,
n_classes=n_classes,
bilinear=bilinear,
n_channels=n_channels,
epochs=args.epochs,
device=device,
img_scale=args.scale,
val_percent=args.val / 100)
except KeyboardInterrupt:
logging.info('Saved interrupt')
try:
sys.exit(0)
except SystemExit:
os._exit(0)