-
Notifications
You must be signed in to change notification settings - Fork 1
/
fetch_data_for_next_phase_acquisition1.py
234 lines (197 loc) · 8.32 KB
/
fetch_data_for_next_phase_acquisition1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from pan_regnety120 import PAN
import torch
import argparse
import logging
import os
import sys
import cv2
from baal.bayesian import MCDropoutConnectModule
from matplotlib import pyplot as plt
from ece_metric import *
import numpy as np
import torch
import torch.nn as nn
from torch import optim
from tqdm import tqdm
import torchvision
from eval import eval_net
from visualize import visualize_to_tensorboard
from torch.utils.tensorboard import SummaryWriter
from dynamic_dataloader import RestrictedDataset
from torch.utils.data import DataLoader, random_split
import json
from dataset import BasicDataset
from std_metric import get_segmentation_mask_uncertainty
from acquisition_function import mean_first_entropy, category_first_entropy, mutual_information
# ailab
dir_img = "/data.local/all/hangd/dynamic_data/full/data/imgs/"
dir_mask = '/data.local/all/hangd/dynamic_data/full/data/masks/'
dir_img_test = '/data.local/all/hangd/dynamic_data/full/data_test/imgs/'
dir_mask_test = '/data.local/all/hangd/dynamic_data/full/data_test/masks/'
global GAUSS_ITERATION
GAUSS_ITERATION = 30
global MEAN
global STD
MEAN = (-4.2677-4.2683-4.2679)/3.0
STD = (0.141+0.1393+0.1410)/3
def add_image_id_to_pool(id: str, filename="pooling_data.json"):
"""id: image name, e.g: GEMS_IMG__2010_MAR__12__HA122541__F8HB4A50_24"""
with open(filename, 'r+') as f:
dic = json.load(f)
dic["ids"].append(id)
with open(filename, 'w') as file:
json.dump(dic, file)
def delete_image_id_from_pool(id: str, filename="pooling_data.json"):
"""id: image name, e.g: GEMS_IMG__2010_MAR__12__HA122541__F8HB4A50_24"""
with open(filename, 'r+') as f:
dic = json.load(f)
dic["ids"].remove(id)
with open(filename, 'w') as file:
json.dump(dic, file)
def get_pool_data(filename="pooling_data.json"):
"""return a list of image names (image id)"""
with open(filename, 'r+') as f:
dic = json.load(f)
return dic["ids"]
def satisfy_acquisition_func(img_ece):
"""
acquisition function: to select image for the next training phase.
If img_ece satisfies the constraint then the image is chosen.
"""
val = img_ece
if val >= MEAN + STD:
return True
return False
def train_net(
dir_checkpoint,
n_classes,
bilinear,
n_channels,
device,
epochs=30,
val_percent=0.1,
save_cp=True,
img_scale=1):
global best_val_iou_score
global best_test_iou_score
net = PAN()
ckpt_path = "/data.local/all/hangd/v1/uncertainty1/best_CP_epoch29_one32th_.pth"
net.to(device=device)
net.load_state_dict(
torch.load(ckpt_path, map_location=device)
)
writer = SummaryWriter(comment=f'_{net.__class__.__name__}_ece_one32nd')
logging.info(f'Model loaded from {ckpt_path}')
batch_size = 64
pool_data = get_pool_data()
dataset = RestrictedDataset(dir_img, dir_mask, pool_data, True)
pool_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True)
# data_test = BasicDataset(imgs_dir=dir_img_test, masks_dir=dir_mask_test, train=False, scale=img_scale)
# test_loader = DataLoader(data_test, batch_size=16, shuffle=False, num_workers=2, pin_memory=True,drop_last=True)
logging.info(f'''Starting selecting in pool:
Device: {device.type}
''')
epochs = 1
# test_score_dice, test_score_iou = eval_net(net, test_loader, n_classes, device)
# print(f"TEST iou = {test_score_iou}, dice = {test_score_dice} ")
std = []
imgs_id = []
count = 0
for epoch in range(epochs):
net.eval()
epoch_loss = 0
n_pool = len(dataset)
with tqdm(total=n_pool, desc='STD calculating', unit='batch', leave=False) as pbar:
for ind, batch in enumerate(tqdm(pool_loader)):
imgs, true_masks = batch['image'], batch['mask']
imgs = imgs.to(device=device, dtype=torch.float32)
true_masks = true_masks.to(device=device, dtype=torch.float32) # BHWC
true_masks = true_masks[:, :1, :, :]
y_pred_samples = []
for i in range(GAUSS_ITERATION):
with torch.no_grad():
logits = net(imgs)
y_pred = torch.sigmoid(logits)
# y_pred = (y_pred > 0.5).float()
y_pred = y_pred[:, :1, :, :]
y_pred_samples.append(y_pred[:, 0, :, :]) # y_pred_samples's shape: (inx, bat, H, W )
y_pred_samples = torch.stack(y_pred_samples, dim=0)
y_pred_samples = y_pred_samples.type(torch.FloatTensor)
mean_y_pred = y_pred_samples.mean(dim=0) # shape: batch, H, W
std_y_pred = y_pred_samples.std(dim=0) # shape: batch, H, W
grid = torchvision.utils.make_grid(mean_y_pred.unsqueeze(1))
writer.add_image('images', grid, ind)
_std = get_segmentation_mask_uncertainty(std_y_pred)
_imgs_id = batch['id']
for i in range(batch_size):
if i >= len(_std):
continue
std.extend(_std)
imgs_id.extend(_imgs_id)
is_selected = False
# TODO
# Using some constraint here to select data
# Acquisition functions
# for i in range(batch_size):
# if i >= len(_std):
# continue
# if satisfy_acquisition_func(_std[i]):
# add_image_id_to_pool(batch['id'][i], filename="data_one32nd.json")
# count += 1
pbar.update()
std, imgs_id = zip(*sorted(zip(std, imgs_id)))
print("length of std/imgs_id: ", len(std), len(imgs_id))
top_100img = imgs_id[-100:]
for i in top_100img:
add_image_id_to_pool(i, "data_one32nd_std.json")
print("Adding successfully!")
def get_args():
parser = argparse.ArgumentParser(description='Fetching dataset',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-cuda', '--cuda-inx', type=int, nargs='?', default=0,
help='index of cuda', dest='cuda_inx')
parser.add_argument('-e', '--epochs', metavar='E', type=int, default=30,
help='Number of epochs', dest='epochs')
parser.add_argument('-b', '--batch-size', metavar='B', type=int, nargs='?', default=4,
help='Batch size', dest='batchsize')
parser.add_argument('-lr', '--learning-rate', metavar='LR', type=float, nargs='?', default=0.00001,
help='Learning rate', dest='lr')
parser.add_argument('-f', '--load', dest='load', type=str, default=False,
help='Load model from a .pth file')
parser.add_argument('-s', '--scale', dest='scale', type=float, default=1,
help='Downscaling factor of the images')
parser.add_argument('-v', '--validation', dest='val', type=float, default=10.0,
help='Percent of the data that is used as validation (0-100)')
return parser.parse_args()
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
args = get_args()
dir_ckp = "/data.local/all/hangd/v1/uncertainty1/"
if torch.cuda.is_available():
_device = 'cuda:' + str(args.cuda_inx)
else:
_device = 'cpu'
device = torch.device(_device)
logging.info(f'Using device {device}')
n_classes = 1
n_channels = 3
bilinear = True
logging.info(f'Network:\n'
f'\t{n_channels} input channels\n'
f'\t{n_classes} output channels (classes)\n'
f'\t{"Bilinear" if bilinear else "Transposed conv"} upscaling')
try:
train_net(dir_checkpoint=dir_ckp,
n_classes=n_classes,
bilinear=bilinear,
n_channels=n_channels,
epochs=args.epochs,
device=device,
img_scale=args.scale,
val_percent=args.val / 100)
except KeyboardInterrupt:
logging.info('Saved interrupt')
try:
sys.exit(0)
except SystemExit:
os._exit(0)