-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathnetlib.py
142 lines (105 loc) · 4.81 KB
/
netlib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""
Contains Network architectures.
The network architectures and weights are partly adapted and used from the great repository https://github.com/Cadene/pretrained-models.pytorch.
"""
import torch, os, numpy as np
import torch.nn as nn
import pretrainedmodels as ptm
import pretrainedmodels.utils as utils
import torchvision.models as models
"""============================================================="""
def initialize_weights(model, type='none'):
if type=='base':
for idx,module in enumerate(model.modules()):
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(module, nn.BatchNorm2d):
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)
elif isinstance(module, nn.Linear):
module.weight.data.normal_(0,0.01)
module.bias.data.zero_()
elif type=='he_n':
for idx,module in enumerate(model.modules()):
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(module, nn.BatchNorm2d):
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)
elif isinstance(module, nn.Linear):
torch.nn.init.kaiming_normal_(module.weight, nonlinearity='relu')
module.bias.data.zero_()
else:
pass
"""=================================================================================================================================="""
### ATTRIBUTE CHANGE HELPER
def rename_attr(model, attr, name):
setattr(model, name, getattr(model, attr))
delattr(model, attr)
def multi_getattr(obj, attr):
if not isinstance(attr,list):
attributes = attr.split(".")
else:
attributes = attr
for i in attributes:
obj = getattr(obj, i)
return obj
def multi_setattr(obj, obj_2_set, attr):
if not isinstance(attr,list):
attributes, attr_to_set = attr.split(".")[:-1],attr.split(".")[-1]
else:
attributes, attr_to_set = attr[:-1],attr[-1]
for i in attributes:
obj = getattr(obj, i)
setattr(obj,attr_to_set,obj_2_set)
"""=================================================================================================================================="""
### NETWORK SELECTION FUNCTION
def networkselect(opt):
if opt.arch == 'resnet50':
network = NetworkSuperClass_ResNet50(opt)
elif opt.arch == 'bninception':
network = NetworkSuperClass_BNInception(opt)
else:
raise Exception('Network {} not available!'.format(opt.arch))
return network
"""============================================================="""
class NetworkSuperClass_ResNet50(nn.Module):
def __init__(self, opt):
super(NetworkSuperClass_ResNet50, self).__init__()
self.pars = opt
if not opt.not_pretrained:
print('Getting pretrained weights...')
self.model = ptm.__dict__['resnet50'](num_classes=1000, pretrained='imagenet')
print('Done.')
else:
print('Not utilizing pretrained weights!')
self.model = ptm.__dict__['resnet50'](num_classes=1000, pretrained=None)
for module in filter(lambda m: type(m) == nn.BatchNorm2d, self.model.modules()):
module.eval()
module.train = lambda _: None
self.model.last_linear = torch.nn.Linear(self.model.last_linear.in_features, opt.embed_dim)
self.layer_blocks = nn.ModuleList([self.model.layer1, self.model.layer2, self.model.layer3, self.model.layer4])
def forward(self, x):
x = self.model.maxpool(self.model.relu(self.model.bn1(self.model.conv1(x))))
for layerblock in self.layer_blocks:
x = layerblock(x)
x = self.model.avgpool(x)
x = x.view(x.size(0),-1)
x = self.model.last_linear(x)
return torch.nn.functional.normalize(x, dim=-1)
"""============================================================="""
class NetworkSuperClass_BNInception(nn.Module):
def __init__(self, opt):
super(NetworkSuperClass_BNInception, self).__init__()
self.pars = opt
if not opt.not_pretrained:
print('Getting pretrained weights...')
self.model = ptm.__dict__['bninception'](num_classes=1000, pretrained='imagenet')
print('Done.')
else:
print('Not utilizing pretrained weights!')
self.model = ptm.__dict__['bninception'](num_classes=1000, pretrained=None)
self.model.last_linear = torch.nn.Linear(self.model.last_linear.in_features, opt.embed_dim)
def forward(self, x):
x = self.model(x)
return torch.nn.functional.normalize(x, dim=-1)