-
Notifications
You must be signed in to change notification settings - Fork 317
/
Copy pathsegment.py
157 lines (124 loc) · 4.86 KB
/
segment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import os.path as osp
import cv2
import numpy as np
import logging
import argparse
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(dest="command")
compile_parser = subparsers.add_parser('compile')
compile_parser.add_argument('--onnx')
compile_parser.add_argument('--quant', default='fp32')
compile_parser.add_argument('--savepth', default='./model.trt')
run_parser = subparsers.add_parser('run')
run_parser.add_argument('--mdpth')
run_parser.add_argument('--impth')
run_parser.add_argument('--outpth', default='./res.png')
args = parser.parse_args()
np.random.seed(123)
in_datatype = trt.nptype(trt.float32)
out_datatype = trt.nptype(trt.int32)
palette = np.random.randint(0, 256, (256, 3)).astype(np.uint8)
ctx = pycuda.autoinit.context
trt.init_libnvinfer_plugins(None, "")
TRT_LOGGER = trt.Logger()
def get_image(impth, size):
mean = np.array([0.485, 0.456, 0.406], dtype=np.float32)[:, None, None]
var = np.array([0.229, 0.224, 0.225], dtype=np.float32)[:, None, None]
iH, iW = size[0], size[1]
img = cv2.imread(impth)[:, :, ::-1]
orgH, orgW, _ = img.shape
img = cv2.resize(img, (iW, iH)).astype(np.float32)
img = img.transpose(2, 0, 1) / 255.
img = (img - mean) / var
return img, (orgH, orgW)
def allocate_buffers(engine):
h_input = cuda.pagelocked_empty(
trt.volume(engine.get_binding_shape(0)), dtype=in_datatype)
print(engine.get_binding_shape(0))
d_input = cuda.mem_alloc(h_input.nbytes)
h_outputs, d_outputs = [], []
n_outs = 1
for i in range(n_outs):
h_output = cuda.pagelocked_empty(
trt.volume(engine.get_binding_shape(i+1)),
dtype=out_datatype)
d_output = cuda.mem_alloc(h_output.nbytes)
h_outputs.append(h_output)
d_outputs.append(d_output)
stream = cuda.Stream()
return (
stream,
h_input,
d_input,
h_outputs,
d_outputs,
)
def build_engine_from_onnx(onnx_file_path):
engine = None ## add this to avoid return deleted engine
EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, builder.create_builder_config() as config, trt.OnnxParser(network, TRT_LOGGER) as parser, trt.Runtime(TRT_LOGGER) as runtime:
# Parse model file
print(f'Loading ONNX file from path {onnx_file_path}...')
assert os.path.exists(onnx_file_path), f'cannot find {onnx_file_path}'
with open(onnx_file_path, 'rb') as fr:
if not parser.parse(fr.read()):
print ('ERROR: Failed to parse the ONNX file.')
for error in range(parser.num_errors):
print (parser.get_error(error))
assert False
# build settings
builder.max_batch_size = 128
config.max_workspace_size = 1 << 30 # 1G
if args.quant == 'fp16':
config.set_flag(trt.BuilderFlag.FP16)
print("Start to build Engine")
plan = builder.build_serialized_network(network, config)
engine = runtime.deserialize_cuda_engine(plan)
return engine
def serialize_engine_to_file(engine, savepth):
plan = engine.serialize()
with open(savepth, "wb") as fw:
fw.write(plan)
def deserialize_engine_from_file(savepth):
with open(savepth, 'rb') as fr, trt.Runtime(TRT_LOGGER) as runtime:
engine = runtime.deserialize_cuda_engine(fr.read())
return engine
def main():
if args.command == 'compile':
engine = build_engine_from_onnx(args.onnx)
serialize_engine_to_file(engine, args.savepth)
elif args.command == 'run':
engine = deserialize_engine_from_file(args.mdpth)
ishape = engine.get_binding_shape(0)
img, (orgH, orgW) = get_image(args.impth, ishape[2:])
## create engine and allocate bffers
(
stream,
h_input,
d_input,
h_outputs,
d_outputs,
) = allocate_buffers(engine)
ctx.push()
context = engine.create_execution_context()
ctx.pop()
bds = [int(d_input), ] + [int(el) for el in d_outputs]
h_input = np.ascontiguousarray(img)
cuda.memcpy_htod_async(d_input, h_input, stream)
context.execute_async(
bindings=bds, stream_handle=stream.handle)
for h_output, d_output in zip(h_outputs, d_outputs):
cuda.memcpy_dtoh_async(h_output, d_output, stream)
stream.synchronize()
oshape = engine.get_binding_shape(1)
pred = np.argmax(h_outputs[0].reshape(oshape), axis=1)
out = palette[pred]
out = out.reshape(*oshape[2:], 3)
out = cv2.resize(out, (orgW, orgH))
cv2.imwrite(args.outpth, out)
if __name__ == '__main__':
main()