This repository has been archived by the owner on Jan 13, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdoc_inference.py
208 lines (173 loc) · 6.59 KB
/
doc_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import utils
import re
import json
import sys
class RuleConstruct(object):
def __init__(self, phenotype):
self._phenotype = phenotype
self._negation = 'Affirmed'
self._temporality = 'Recent'
self._experiencer = 'Patient'
@property
def phenotype(self):
return self._phenotype
@phenotype.setter
def phenotype(self, value):
self._phenotype = value
@property
def negation(self):
return self._negation
@negation.setter
def negation(self, value):
self._negation = value
@property
def temporality(self):
return self._temporality
@temporality.setter
def temporality(self, value):
self._temporality = value
@property
def experiencer(self):
return self._experiencer
@experiencer.setter
def experiencer(self, value):
self._experiencer = value
class PhenotypeRule(object):
def __init__(self):
self._inclusion = []
self._exclusion = []
self._rule_label = None
def inclusion_constructs(self):
return self._inclusion
def exclusion_units(self):
return self._exclusion
@property
def rule_label(self):
return self._rule_label
@rule_label.setter
def rule_label(self, value):
self._rule_label = value
@staticmethod
def load_rules(rule_file):
rules = utils.load_json_data(rule_file)
prs = []
for r in rules:
pr = PhenotypeRule()
pr.rule_label = r['label']
prs.append(pr)
pr.inclusion_constructs = [PhenotypeRule.get_rule_construct(c) for c in r['inclusions']]
pr.exclusion_units = []
for u in r['exclusion_units']:
pr.exclusion_units.append([PhenotypeRule.get_rule_construct(c) for c in u])
return prs
@staticmethod
def get_rule_construct(c):
rc = RuleConstruct(c['phenotype'])
if 'negation' in c:
rc.negation = c['negation']
if 'temporality' in c:
rc.temporality = c['temporality']
if 'experiencer' in c:
rc.experiencer = c['experiencer']
return rc
class PhenotypeRuleExecutor(object):
def __init__(self):
pass
@staticmethod
def apply_rules(doc_anns, rules):
label_prov = []
anns = [t['ann'] for t in doc_anns]
for r in rules:
prov = {"exclusion": [], "inclusion": None}
label = ''
inclusion_matched = PhenotypeRuleExecutor.match_rule_construct(r.inclusion_constructs, anns)
if len(inclusion_matched) > 0:
prov['inclusion'] = inclusion_matched
for ec in r.exclusion_units:
exclusion_matched = PhenotypeRuleExecutor.match_rule_construct(ec, anns)
if len(exclusion_matched) > 0:
prov['exclusion'].append({'ec': ec, 'matched': exclusion_matched})
if len(prov['exclusion']) == 0:
label = r.rule_label
if label != '': # or len(prov['exclusion']) > 0:
label_prov.append({'label': label, 'prov': prov})
return label_prov
@staticmethod
def match_ann_rule(rc, ann):
return ann['minorType'] == rc.phenotype and ann['negation'] == rc.negation and ann[
'temporality'] == rc.temporality and ann['experiencer'] == rc.experiencer
@staticmethod
def match_rule_construct(rc_list, anns):
matched = []
for ann in anns:
m = True
for rc in rc_list:
if not PhenotypeRuleExecutor.match_ann_rule(rc, ann):
m = False
break
if m:
matched.append(ann)
return matched
def load_patient_truth(truth_file):
all_pids = []
lines = utils.read_text_file(truth_file)
type2ids = {}
for l in lines:
arr = l.split('\t')
if arr[2] not in type2ids:
type2ids[arr[2]] = []
type2ids[arr[2]].append(arr[0])
all_pids.append(arr[0])
return type2ids, all_pids
def cal_performance(no_reports_pids, type2ids, doc_type2id, gd_labels, pred_label):
gt_list = []
for lbl in gd_labels:
gt_list += type2ids[lbl]
gt_ids = set(gt_list)
pr_ids = set(doc_type2id[pred_label])
print('\n*****%s******' % pred_label)
false_negative = gt_ids - no_reports_pids - pr_ids
false_positive = pr_ids - gt_ids
print('total reported patients: %s, total truth: %s, predicted: %s, false negative:%s, false positive:%s'
% (len(pids), len(gt_ids - no_reports_pids), len(pr_ids), len(false_negative), len(false_positive)))
print('false negative: %s' % (false_negative))
print('false positive: %s' % false_positive)
def doc_infer_with_ground_truth(patient_level_tsv, pids, doc_type2id):
type2ids, all_pids = load_patient_truth(patient_level_tsv)
no_reports_pids = set(all_pids) - set(pids)
cal_performance(no_reports_pids, type2ids, doc_type2id, ['SAH', 'ICH'], 'primary haemorrhagic stroke')
cal_performance(no_reports_pids, type2ids, doc_type2id, ['SAH'], 'subarachnoid haemorrhage')
cal_performance(no_reports_pids, type2ids, doc_type2id, ['ICH'], 'intracerebra haemorrhage')
cal_performance(no_reports_pids, type2ids, doc_type2id, ['Ischaemic'], 'ischaemic stroke')
def doc_infer(settings):
rules = PhenotypeRule.load_rules(settings['rule_file'])
d2predicted = utils.load_json_data(settings['doc_nlp_results'])
doc_labels_output = settings['doc_inference_output']
s = ''
doc_type2id = {}
pids = []
for d in d2predicted:
m = re.match(r'Stroke\_id\_(\d+)(\.\d+){0,1}', d)
pid = d
if m is not None:
pid = m.group(1)
pids.append(pid)
label_provs = PhenotypeRuleExecutor.apply_rules(d2predicted[d], rules)
print(pid, d, label_provs)
for lp in label_provs:
if lp['label'] != '':
s += '%s\t%s\n' % (pid, lp['label'])
if lp['label'] not in doc_type2id:
doc_type2id[lp['label']] = []
doc_type2id[lp['label']].append(pid)
pids = list(set(pids))
print(json.dumps(pids))
utils.save_string(s, doc_labels_output)
if 'patient_level_truth_tsv' in settings:
doc_infer_with_ground_truth(settings['patient_level_truth_tsv'], pids, doc_type2id)
if __name__ == "__main__":
if len(sys.argv) != 2:
print('the syntax is [python doc_inference.py PROCESS_SETTINGS_FILE_PATH]')
else:
infer_settings = utils.load_json_data(sys.argv[1])
doc_infer(infer_settings)