-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathschedule_alg_s1.py
173 lines (145 loc) · 5.72 KB
/
schedule_alg_s1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# 7b each layer runtime mem (512) 9043968 Bytes
# 7b each layer mem 404750336, tok_embeddings output 262144000
# 7b time A10 each layer 1s
# emb 0.095ms
# layers 1.02ms
# norm 0.124ms
# output 0.648ms
# 1 1.288ms
# 2 2.267ms
# 4 4.274ms
# 8 8.281ms
# 16 16.244ms
# 32 32.233ms
from typing import List, Tuple, Dict, Any, Set
# spec
def get_model_layers(model_name: str) -> List[str]:
# return layer_name
if model_name == "llama-2-7b-chat-slice":
return ["llama-2-7b-chat-slice/tok_embeddings",
*[f"llama-2-7b-chat-slice/layers.{i}" for i in range(32)],
"llama-2-7b-chat-slice/norm", "llama-2-7b-chat-slice/output"]
if model_name == "llama-2-70b-chat-slice":
return ["llama-2-70b-chat-slice/tok_embeddings",
*[f"llama-2-70b-chat-slice/layers.{i}" for i in range(80)],
"llama-2-70b-chat-slice/norm", "llama-2-70b-chat-slice/output"]
raise NotImplementedError
# print(get_model_layers("llama-2-70b-chat-slice"))
def parse_layer_name(layer_name: str):
s = layer_name.split('/')
return s[0], s[1]
def get_mem_consumption(full_layer_name: str) -> (float, float): # return (model_mem, inference_mem) Bytes
model_name, layer_name = parse_layer_name(full_layer_name)
if model_name.startswith("llama-2-7b"):
if layer_name == "tok_embeddings":
return (262144000, 0)
elif layer_name.startswith("layer"):
return (404750336, 8388608)
elif layer_name == "norm":
return (8866, 0)
elif layer_name == "output":
return (262144000, 0)
else:
raise NotImplementedError("Unknown layers")
elif model_name.startswith("llama-2-70b"):
if layer_name == "tok_embeddings":
return (524288000, 0)
elif layer_name.startswith("layer"):
return (1711276032, 2097152)
elif layer_name == "norm":
return (17058, 0)
elif layer_name == "output":
return (524288000, 0)
else:
raise NotImplementedError("Unknown layers")
raise NotImplementedError
def get_gpu_total_mem(gpu_type: str) -> float:
# return mem
if gpu_type == "A10G":
return 23827316736
if gpu_type == "A100":
return 84986691584
raise NotImplementedError
def get_computation_time(full_layer_name: str, gpu_type: str) -> (float, float): # return (loading_time, inference_time) ms # Note: loading_time is related to the disk speed
model_name, layer_name = parse_layer_name(full_layer_name)
if gpu_type == "A10G":
if model_name.startswith("llama-2-7b"):
if layer_name == "tok_embeddings":
return (144.695, 0.095)
elif layer_name.startswith("layer"):
return (220.949, 1.02)
elif layer_name == "norm":
return (0.543, 0.124)
elif layer_name == "output":
return (152.412, 0.648)
else:
raise NotImplementedError("Unknown layers")
elif model_name.startswith("llama-2-70b"):
if layer_name == "tok_embeddings":
return (279.545, 0.098)
elif layer_name.startswith("layer"):
return (864.465, 3.748)
elif layer_name == "norm":
return (0.534941, 0.134)
elif layer_name == "output":
return (277.843, 1.159)
else:
raise NotImplementedError("Unknown layers")
if gpu_type == "A100":
if model_name.startswith("llama-2-7b"):
if layer_name == "tok_embeddings":
return (164.065, 0.074)
elif layer_name.startswith("layer"):
return (265.658, 0.675)
elif layer_name == "norm":
return (0.936, 0.113)
elif layer_name == "output":
return (166.615, 0.203)
else:
raise NotImplementedError("Unknown layers")
elif model_name.startswith("llama-2-70b"):
if layer_name == "tok_embeddings":
return (330.723, 0.074)
elif layer_name.startswith("layer"):
return (749.449, 1.211)
elif layer_name == "norm":
return (0.942, 0.124)
elif layer_name == "output":
return (188.085, 0.347)
else:
raise NotImplementedError("Unknown layers")
raise NotImplementedError
# status
nodes_list = list(map(lambda i: f"A10_{i}", range(1024))) + list(map(lambda i: f"A100_{i}", range(8)))
def get_nodes() -> List[str]:
# return node_num
return nodes_list
raise NotImplementedError
def get_node_allocated_mem(w_id: str) -> float:
# return mem
return 0
raise NotImplementedError
def get_node_gpu_type(w_id: str) -> str:
# return gpu_type
if w_id.startswith("A10_"):
return "A10G"
if w_id.startswith("A100_"):
return "A100"
raise NotImplementedError
def get_node_loaded_layers(w_id: str) -> List[str]:
# return layer_name
return []
raise NotImplementedError
def get_network_latency(from_w_id: str, to_w_id: str) -> float:
import random
# return latency
random.seed(f"{from_w_id}-{to_w_id}")
if from_w_id.startswith("A10_") and to_w_id.startswith("A100_"):
return 5.0 + random.random() * 10.0
if from_w_id.startswith("A100_") and to_w_id.startswith("A10_"):
return 5.0 + random.random() * 10.0
if from_w_id.startswith("A10_") and to_w_id.startswith("A10_"):
return 10.0 + random.random() * 10.0
if from_w_id.startswith("A100_") and to_w_id.startswith("A100_"):
return 5.0 + random.random() * 5.0
raise NotImplementedError(f"Unknown network latency between {from_w_id} and {to_w_id}.")