-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPhiPolyhedron.cpp
318 lines (238 loc) · 8.67 KB
/
PhiPolyhedron.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
#include <bit>
#include <iomanip>
#include "PhiPolyhedron.h"
#include "PhiVector.h"
#include "PhiVector3.h"
CPhiPolyhedron::CPhiPolyhedron() {}
CPhiPolyhedron& CPhiPolyhedron::CopyForEachVertex(const std::vector<CPhiVector3>& rVertices) {
const u32 uInitialVertCount = m_Vertices.size();
const u32 uInitialEdgeCount = m_Edges.size();
const u32 uInitialFaceCount = m_Faces.size();
u32 uVertCount = uInitialVertCount;
if (rVertices.size() > 1) {
for (u32 uRootVertIndex = 1; uRootVertIndex < rVertices.size(); ++uRootVertIndex) {
for (u32 uCopyVertIndex = 0; uCopyVertIndex < uInitialVertCount; ++uCopyVertIndex) {
m_Vertices.emplace_back(rVertices[uRootVertIndex] + m_Vertices[uCopyVertIndex]);
}
for (u32 uCopyEdgeIndex = 0; uCopyEdgeIndex < uInitialEdgeCount; ++uCopyEdgeIndex) {
const std::pair<u32, u32>& rCopyEdge = m_Edges[uCopyEdgeIndex];
m_Edges.emplace_back(uVertCount + rCopyEdge.first, uVertCount + rCopyEdge.second);
}
for (u32 uCopyFaceIndex = 0; uCopyFaceIndex < uInitialFaceCount; ++uCopyFaceIndex) {
std::vector<u32> copyFace = m_Faces[uCopyFaceIndex];
for (u32 uFaceVert = 0; uFaceVert < copyFace.size(); ++uFaceVert) {
copyFace[uFaceVert] += uVertCount;
}
m_Faces.push_back(copyFace);
}
uVertCount += uInitialVertCount;
}
}
for (u32 uOrigVertIndex = 0; uOrigVertIndex < uInitialVertCount; ++uOrigVertIndex) {
m_Vertices[uOrigVertIndex] += rVertices[0];
}
return *this;
}
CPhiPolyhedron& CPhiPolyhedron::GenerateIcosahedronFractal(u32 uIteration) {
*this = GetIcosahedron();
if (!uIteration) {
return *this;
}
CPhiPolyhedron scalingIcosahedron(GetIcosahedron());
CPhiVector scalingVector(std::vector<s32>{0, 1});
scalingIcosahedron *= scalingVector;
CopyForEachVertex(scalingIcosahedron.m_Vertices);
scalingVector *= scalingVector;
while (--uIteration) {
scalingIcosahedron *= scalingVector;
CopyForEachVertex(scalingIcosahedron.m_Vertices);
}
return *this;
}
CPhiPolyhedron& CPhiPolyhedron::GenerateIcosidodecahedronFractal(u32 uIteration) {
*this = GetIcosidodecahedron();
if (!uIteration) {
return *this;
}
CPhiPolyhedron scalingPolyhedron(GetIcosidodecahedron());
scalingPolyhedron *= std::vector<s32>{0, 2};
CopyForEachVertex(scalingPolyhedron.m_Vertices);
CPhiVector scalingVector(std::vector<s32>{0, 1, 1});
while (--uIteration) {
scalingPolyhedron *= scalingVector;
CopyForEachVertex(scalingPolyhedron.m_Vertices);
}
return *this;
}
const CPhiPolyhedron& CPhiPolyhedron::GetIcosahedron() {
if (!m_sIcosahedron.m_Vertices.size()) {
GenerateIcosahedron();
}
return m_sIcosahedron;
}
const CPhiPolyhedron& CPhiPolyhedron::GetIcosidodecahedron() {
if (!m_sIcosidodecahedron.m_Vertices.size()) {
GenerateIcosidodecahedron();
}
return m_sIcosidodecahedron;
}
CPhiPolyhedron CPhiPolyhedron::operator*(const CPhiVector& rPhiVector) const {
return CPhiPolyhedron(*this) *= rPhiVector;
}
CPhiPolyhedron CPhiPolyhedron::operator*(s32 sScalar) const {
return CPhiPolyhedron(*this) *= sScalar;
}
CPhiPolyhedron& CPhiPolyhedron::operator*=(const CPhiVector& rPhiVector) {
for (u32 v = 0; v < m_Vertices.size(); ++v) {
m_Vertices[v] *= rPhiVector;
}
return *this;
}
CPhiPolyhedron& CPhiPolyhedron::operator*=(s32 sScalar) {
for (u32 v = 0; v < m_Vertices.size(); ++v) {
m_Vertices[v] *= sScalar;
}
return *this;
}
std::ostream& operator<<(std::ostream& rOStream, const CPhiPolyhedron& rPhiPolyhedron) {
rOStream << "{\nVertices (" << rPhiPolyhedron.m_Vertices.size() << "):\n";
for (u32 v = 0; v < rPhiPolyhedron.m_Vertices.size(); ++v) {
rOStream << "\t" << std::setw(4) << v << ": " << rPhiPolyhedron.m_Vertices[v] << '\n';
}
rOStream << "Edges (" << rPhiPolyhedron.m_Edges.size() << "):\n";
for (u32 e = 0; e < rPhiPolyhedron.m_Edges.size(); ++e) {
const std::pair<u32, u32>& rEdge = rPhiPolyhedron.m_Edges[e];
rOStream << "\t" << std::setw(4) << e << ": (" << rEdge.first << ", " << rEdge.second << ")\n";
}
rOStream << "Faces (" << rPhiPolyhedron.m_Faces.size() << "):\n";
for (u32 f = 0; f < rPhiPolyhedron.m_Faces.size(); ++f) {
const std::vector<u32>& rFace = rPhiPolyhedron.m_Faces[f];
rOStream << "\t" << std::setw(4) << f << ": (";
if (rFace.size()) {
rOStream << rFace[0];
for (u32 fv = 1; fv < rFace.size(); ++fv) {
rOStream << ", " << rFace[fv];
}
}
rOStream << ")\n";
}
return rOStream << "}\n";
}
void CPhiPolyhedron::GenerateIcosahedron() {
const CPhiVector3 baseVector(
std::vector<s32>{1},
std::vector<s32>{0, 1},
std::vector<s32>{0});
std::vector<CPhiVector3>& rVerts = m_sIcosahedron.m_Vertices;
for (u32 i = 0; i < 3; ++i) {
for (u32 j = 0; j < 4; ++j) {
const CPhiVector3 reflectedVector(
baseVector.x * (j & 2 ? -1 : 1),
baseVector.y * (j & 1 ? -1 : 1),
baseVector.z);
rVerts.emplace_back(
reflectedVector[(i ) % 3],
reflectedVector[(i + 1) % 3],
reflectedVector[(i + 2) % 3]);
}
}
std::vector<std::pair<u32, u32>>& rEdges = m_sIcosahedron.m_Edges;
std::vector<std::vector<u32>>& rFaces = m_sIcosahedron.m_Faces;
for (u32 i = 0; i < 11; ++i) {
for (u32 j = i + 1; j < 12; ++j) {
if (static_cast<f32>((rVerts[i] - rVerts[j]).GetMagnitudeSquared()) < 5.0f) {
rEdges.emplace_back(i, j);
for (u32 k = j + 1; k < 12; ++k) {
if (static_cast<f32>((rVerts[i] - rVerts[k]).GetMagnitudeSquared()) < 5.0f &&
static_cast<f32>((rVerts[j] - rVerts[k]).GetMagnitudeSquared()) < 5.0f) {
rFaces.push_back(std::vector<u32>{i, j, k});
}
}
}
}
}
}
void CPhiPolyhedron::GenerateIcosidodecahedron() {
std::vector<CPhiVector3>& rIcosaVerts = m_sIcosahedron.m_Vertices;
if (!rIcosaVerts.size()) {
GenerateIcosahedron();
}
std::vector<std::pair<u32, u32>>& rIcosaEdges = m_sIcosahedron.m_Edges;
std::vector<CPhiVector3>& rVerts = m_sIcosidodecahedron.m_Vertices;
for (u32 i = 0; i < 30; ++i) {
const std::pair<u32, u32>& rIcosaEdge = rIcosaEdges[i];
rVerts.emplace_back(rIcosaVerts[rIcosaEdge.first] + rIcosaVerts[rIcosaEdge.second]);
}
std::vector<std::pair<u32, u32>>& rEdges = m_sIcosidodecahedron.m_Edges;
std::vector<u32> edgeMap(30, 0);
for (u32 i = 0; i < 29; ++i) {
for (u32 j = i + 1; j < 30; ++j) {
if (static_cast<f32>((rVerts[i] - rVerts[j]).GetMagnitudeSquared()) < 5.0f) {
rEdges.emplace_back(i, j);
edgeMap[i] |= 1 << j;
edgeMap[j] |= 1 << i;
}
}
}
const CPhiVector adjacentPhiVectorSquared(std::vector<s32>{4});
const CPhiVector acrossPhiVectorSquared(std::vector<s32>{0, 0, 4});
std::vector<std::vector<u32>>& rFaces = m_sIcosidodecahedron.m_Faces;
std::vector<u32> octants(8, 0);
for (u32 i = 0; i < 30; ++i) {
CPhiVector3& rVert = rVerts[i];
if (!rVert.x[0] && !rVert.y[0] && !rVert.z[0]) {
u32 aNeighbors[4];
u32 uEdges = edgeMap[i];
// Unpack the adjacent vertex indices
for (u32 n = 0; n < 4; ++n) {
aNeighbors[n] = std::countr_zero(uEdges);
uEdges &= ~(1 << aNeighbors[n]);
}
// Make aNeighbors[0] and aNeighbors[1] be on the same pentagon (likewise with 2 and 3)
for (u32 n = 1; n < 4; ++n) {
if ((rVerts[aNeighbors[0]] - rVerts[aNeighbors[n]]).GetMagnitudeSquared() <=> acrossPhiVectorSquared == 0) {
std::swap(aNeighbors[n], aNeighbors[1]);
break;
}
}
// Make aNeighbors[0] and aNeighbors[2] be on the same triangle (likewise with 1 and 3)
if ((rVerts[aNeighbors[0]] - rVerts[aNeighbors[2]]).GetMagnitudeSquared() <=> adjacentPhiVectorSquared != 0) {
std::swap(aNeighbors[2], aNeighbors[3]);
}
rFaces.push_back(std::vector<u32>{i, aNeighbors[0], aNeighbors[2]});
rFaces.push_back(std::vector<u32>{i, aNeighbors[1], aNeighbors[3]});
u32 aAcrosses[4];
for (u32 n = 0; n < 4; ++n) {
u32 uNeighborEdges = edgeMap[aNeighbors[n]];
for (u32 a = 0; a < 4; ++a) {
u32 uAcross = std::countr_zero(uNeighborEdges);
if ((rVerts[i] - rVerts[uAcross]).GetMagnitudeSquared() <=> acrossPhiVectorSquared == 0) {
aAcrosses[n] = uAcross;
break;
}
uNeighborEdges &= ~(1 << uAcross);
}
}
rFaces.push_back(std::vector<u32>{i, aNeighbors[0], aAcrosses[0], aAcrosses[1], aNeighbors[1]});
rFaces.push_back(std::vector<u32>{i, aNeighbors[2], aAcrosses[2], aAcrosses[3], aNeighbors[3]});
} else {
octants[
((static_cast<f32>(rVert.x) < 0.0) ) |
((static_cast<f32>(rVert.y) < 0.0) << 1) |
((static_cast<f32>(rVert.z) < 0.0) << 2)] |= 1 << i;
}
}
for (u32 o = 0; o < 8; ++o) {
std::vector<u32> face;
u32 uOctant = octants[o];
// Unpack the octant vertex indices
for (u32 n = 0; n < 3; ++n) {
u32 vert = std::countr_zero(uOctant);
uOctant &= ~(1 << vert);
face.emplace_back(vert);
}
rFaces.push_back(face);
}
}
CPhiPolyhedron CPhiPolyhedron::m_sIcosahedron;
CPhiPolyhedron CPhiPolyhedron::m_sIcosidodecahedron;