-
Notifications
You must be signed in to change notification settings - Fork 5
/
noise_classes.py
614 lines (465 loc) · 25.4 KB
/
noise_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
import torch
from torch import nn, Tensor, Generator, lerp
from torch.nn.functional import unfold
import torch.nn.functional as F
from typing import Callable, Tuple
from math import pi
from comfy.k_diffusion.sampling import BrownianTreeNoiseSampler
from torch.distributions import StudentT, Laplace
import numpy as np
import pywt
import functools
# Set this to "True" if you have installed OpenSimplex. Recommended to install without dependencies due to conflicting packages: pip3 install opensimplex --no-deps
OPENSIMPLEX_ENABLE = False
if OPENSIMPLEX_ENABLE:
from opensimplex import OpenSimplex
class PrecisionTool:
def __init__(self, cast_type='fp64'):
self.cast_type = cast_type
def cast_tensor(self, func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
if self.cast_type not in ['fp64', 'fp32', 'fp16']:
return func(*args, **kwargs)
target_device = None
for arg in args:
if torch.is_tensor(arg):
target_device = arg.device
break
if target_device is None:
for v in kwargs.values():
if torch.is_tensor(v):
target_device = v.device
break
# recursively zs_recast tensors in nested dictionaries
def cast_and_move_to_device(data):
if torch.is_tensor(data):
if self.cast_type == 'fp64':
return data.to(torch.float64).to(target_device)
elif self.cast_type == 'fp32':
return data.to(torch.float32).to(target_device)
elif self.cast_type == 'fp16':
return data.to(torch.float16).to(target_device)
elif isinstance(data, dict):
return {k: cast_and_move_to_device(v) for k, v in data.items()}
return data
new_args = [cast_and_move_to_device(arg) for arg in args]
new_kwargs = {k: cast_and_move_to_device(v) for k, v in kwargs.items()}
return func(*new_args, **new_kwargs)
return wrapper
def set_cast_type(self, new_value):
if new_value in ['fp64', 'fp32', 'fp16']:
self.cast_type = new_value
else:
self.cast_type = 'fp64'
precision_tool = PrecisionTool(cast_type='fp64')
def noise_generator_factory(cls, **fixed_params):
def create_instance(**kwargs):
params = {**fixed_params, **kwargs}
return cls(**params)
return create_instance
def like(x):
return {'size': x.shape, 'dtype': x.dtype, 'layout': x.layout, 'device': x.device}
def scale_to_range(x, scaled_min = -1.73, scaled_max = 1.73): #1.73 is roughly the square root of 3
return scaled_min + (x - x.min()) * (scaled_max - scaled_min) / (x.max() - x.min())
def normalize(x):
return (x - x.mean())/ x.std()
class NoiseGenerator:
def __init__(self, x=None, size=None, dtype=None, layout=None, device=None, seed=42, generator=None, sigma_min=None, sigma_max=None):
self.seed = seed
self.sigma_min = sigma_min
self.sigma_max = sigma_max
if x is not None:
self.x = x
self.size = x.shape
self.dtype = x.dtype
self.layout = x.layout
self.device = x.device
else:
self.x = torch.zeros(size, dtype, layout, device)
# allow overriding parameters imported from latent 'x' if specified
if size is not None:
self.size = size
if dtype is not None:
self.dtype = dtype
if layout is not None:
self.layout = layout
if device is not None:
self.device = device
if generator is None:
self.generator = torch.Generator(device=self.device).manual_seed(seed)
else:
self.generator = generator
def __call__(self):
raise NotImplementedError("This method got clownsharked!")
def update(self, **kwargs):
updated_values = []
for attribute_name, value in kwargs.items():
if value is not None:
setattr(self, attribute_name, value)
updated_values.append(getattr(self, attribute_name))
return tuple(updated_values)
class BrownianNoiseGenerator(NoiseGenerator):
def __call__(self, *, sigma=None, sigma_next=None, **kwargs):
return BrownianTreeNoiseSampler(self.x, self.sigma_min, self.sigma_max, seed=self.seed, cpu = self.device.type=='cpu')(sigma, sigma_next)
class FractalNoiseGenerator(NoiseGenerator):
def __init__(self, x=None, size=None, dtype=None, layout=None, device=None, seed=42, generator=None, sigma_min=None, sigma_max=None,
alpha=0.0, k=1.0, scale=0.1):
self.update(alpha=alpha, k=k, scale=scale)
super().__init__(x, size, dtype, layout, device, seed, generator, sigma_min, sigma_max)
def __call__(self, *, alpha=None, k=None, scale=None, **kwargs):
self.update(alpha=alpha, k=k, scale=scale)
b, c, h, w = self.size
noise = torch.normal(mean=0.0, std=1.0, size=self.size, dtype=self.dtype, layout=self.layout, device=self.device, generator=self.generator)
y_freq = torch.fft.fftfreq(h, 1/h, device=self.device)
x_freq = torch.fft.fftfreq(w, 1/w, device=self.device)
freq = torch.sqrt(y_freq[:, None]**2 + x_freq[None, :]**2).clamp(min=1e-10)
spectral_density = self.k / torch.pow(freq, self.alpha * self.scale)
spectral_density[0, 0] = 0
noise_fft = torch.fft.fft2(noise)
modified_fft = noise_fft * spectral_density
noise = torch.fft.ifft2(modified_fft).real
return noise / torch.std(noise)
class SimplexNoiseGenerator(NoiseGenerator):
def __init__(self, x=None, size=None, dtype=None, layout=None, device=None, seed=42, generator=None, sigma_min=None, sigma_max=None,
scale=0.01):
super().__init__(x, size, dtype, layout, device, seed, generator, sigma_min, sigma_max)
self.noise = OpenSimplex(seed=seed)
self.scale = scale
def __call__(self, *, scale=None, **kwargs):
self.update(scale=scale)
b, c, h, w = self.size
noise_array = self.noise.noise3array(np.arange(w),np.arange(h),np.arange(c))
self.noise = OpenSimplex(seed=self.noise.get_seed()+1)
noise_tensor = torch.from_numpy(noise_array).to(self.device)
noise_tensor = torch.unsqueeze(noise_tensor, dim=0)
return noise_tensor / noise_tensor.std()
#return normalize(scale_to_range(noise_tensor))
class HiresPyramidNoiseGenerator(NoiseGenerator):
def __init__(self, x=None, size=None, dtype=None, layout=None, device=None, seed=42, generator=None, sigma_min=None, sigma_max=None,
discount=0.7, mode='nearest-exact'):
self.update(discount=discount, mode=mode)
super().__init__(x, size, dtype, layout, device, seed, generator, sigma_min, sigma_max)
def __call__(self, *, discount=None, mode=None, **kwargs):
self.update(discount=discount, mode=mode)
b, c, h, w = self.size
orig_h, orig_w = h, w
u = nn.Upsample(size=(orig_h, orig_w), mode=self.mode).to(self.device)
noise = ((torch.rand(size=self.size, dtype=self.dtype, layout=self.layout, device=self.device, generator=self.generator) - 0.5) * 2 * 1.73)
for i in range(4):
r = torch.rand(1, device=self.device, generator=self.generator).item() * 2 + 2
h, w = min(orig_h * 15, int(h * (r ** i))), min(orig_w * 15, int(w * (r ** i)))
new_noise = torch.randn((b, c, h, w), dtype=self.dtype, layout=self.layout, device=self.device, generator=self.generator)
upsampled_noise = u(new_noise)
noise += upsampled_noise * self.discount ** i
if h >= orig_h * 15 or w >= orig_w * 15:
break # if resolution is too high
return noise / noise.std()
class PyramidNoiseGenerator(NoiseGenerator):
def __init__(self, x=None, size=None, dtype=None, layout=None, device=None, seed=42, generator=None, sigma_min=None, sigma_max=None,
discount=0.8, mode='nearest-exact'):
self.update(discount=discount, mode=mode)
super().__init__(x, size, dtype, layout, device, seed, generator, sigma_min, sigma_max)
def __call__(self, *, discount=None, mode=None, **kwargs):
self.update(discount=discount, mode=mode)
x = torch.zeros(self.size, dtype=self.dtype, layout=self.layout, device=self.device)
b, c, h, w = self.size
orig_h, orig_w = h, w
r = 1
for i in range(5):
r *= 2
x += torch.nn.functional.interpolate(
torch.normal(mean=0, std=0.5 ** i, size=(b, c, h * r, w * r), dtype=self.dtype, layout=self.layout, device=self.device, generator=self.generator),
size=(orig_h, orig_w), mode=self.mode
) * self.discount ** i
return x / x.std()
class InterpolatedPyramidNoiseGenerator(NoiseGenerator):
def __init__(self, x=None, size=None, dtype=None, layout=None, device=None, seed=42, generator=None, sigma_min=None, sigma_max=None,
discount=0.7, mode='nearest-exact'):
self.update(discount=discount, mode=mode)
super().__init__(x, size, dtype, layout, device, seed, generator, sigma_min, sigma_max)
def __call__(self, *, discount=None, mode=None, **kwargs):
self.update(discount=discount, mode=mode)
b, c, h, w = self.size
orig_h, orig_w = h, w
noise = ((torch.rand(size=self.size, dtype=self.dtype, layout=self.layout, device=self.device, generator=self.generator) - 0.5) * 2 * 1.73)
multipliers = [1]
for i in range(4):
r = torch.rand(1, device=self.device, generator=self.generator).item() * 2 + 2
h, w = min(orig_h * 15, int(h * (r ** i))), min(orig_w * 15, int(w * (r ** i)))
new_noise = torch.randn((b, c, h, w), dtype=self.dtype, layout=self.layout, device=self.device, generator=self.generator)
upsampled_noise = nn.functional.interpolate(new_noise, size=(orig_h, orig_w), mode=self.mode)
noise += upsampled_noise * self.discount ** i
multipliers.append( self.discount ** i)
if h >= orig_h * 15 or w >= orig_w * 15:
break # if resolution is too high
noise = noise / sum([m ** 2 for m in multipliers]) ** 0.5
return noise / noise.std()
class CascadeBPyramidNoiseGenerator(NoiseGenerator):
def __init__(self, x=None, size=None, dtype=None, layout=None, device=None, seed=42, generator=None, sigma_min=None, sigma_max=None,
levels=10, mode='nearest', size_range=[1,16]):
self.update(epsilon=x, levels=levels, mode=mode, size_range=size_range)
super().__init__(x, size, dtype, layout, device, seed, generator, sigma_min, sigma_max)
def __call__(self, *, levels=10, mode='nearest', size_range=[1,16], **kwargs):
self.update(levels=levels, mode=mode)
b, c, h, w = self.size
epsilon = torch.randn(self.size, dtype=self.dtype, layout=self.layout, device=self.device, generator=self.generator)
multipliers = [1]
for i in range(1, levels):
m = 0.75 ** i
h, w = int(epsilon.size(-2) // (2 ** i)), int(epsilon.size(-2) // (2 ** i))
if size_range is None or (size_range[0] <= h <= size_range[1] or size_range[0] <= w <= size_range[1]):
offset = torch.randn(epsilon.size(0), epsilon.size(1), h, w, device=self.device, generator=self.generator)
epsilon = epsilon + torch.nn.functional.interpolate(offset, size=epsilon.shape[-2:], mode=self.mode) * m
multipliers.append(m)
if h <= 1 or w <= 1:
break
epsilon = epsilon / sum([m ** 2 for m in multipliers]) ** 0.5 #divides the epsilon tensor by the square root of the sum of the squared multipliers.
return epsilon
class UniformNoiseGenerator(NoiseGenerator):
def __init__(self, x=None, size=None, dtype=None, layout=None, device=None, seed=42, generator=None, sigma_min=None, sigma_max=None,
mean=0.0, scale=1.73):
self.update(mean=mean, scale=scale)
super().__init__(x, size, dtype, layout, device, seed, generator, sigma_min, sigma_max)
def __call__(self, *, mean=None, scale=None, **kwargs):
self.update(mean=mean, scale=scale)
noise = torch.rand(self.size, dtype=self.dtype, layout=self.layout, device=self.device, generator=self.generator)
return self.scale * 2 * (noise - 0.5) + self.mean
class GaussianNoiseGenerator(NoiseGenerator):
def __init__(self, x=None, size=None, dtype=None, layout=None, device=None, seed=42, generator=None, sigma_min=None, sigma_max=None,
mean=0.0, std=1.0):
self.update(mean=mean, std=std)
super().__init__(x, size, dtype, layout, device, seed, generator, sigma_min, sigma_max)
def __call__(self, *, mean=None, std=None, **kwargs):
self.update(mean=mean, std=std)
noise = torch.randn(self.size, dtype=self.dtype, layout=self.layout, device=self.device, generator=self.generator)
return (noise - noise.mean()) / noise.std()
#return noise * self.std + self.mean
class LaplacianNoiseGenerator(NoiseGenerator):
def __init__(self, x=None, size=None, dtype=None, layout=None, device=None, seed=42, generator=None, sigma_min=None, sigma_max=None,
loc=0, scale=1.0):
self.update(loc=loc, scale=scale)
super().__init__(x, size, dtype, layout, device, seed, generator, sigma_min, sigma_max)
def __call__(self, *, loc=None, scale=None, **kwargs):
self.update(loc=loc, scale=scale)
b, c, h, w = self.size
orig_h, orig_w = h, w
noise = torch.randn(self.size, dtype=self.dtype, layout=self.layout, device=self.device, generator=self.generator) / 4.0
rng_state = torch.random.get_rng_state()
torch.manual_seed(self.generator.initial_seed())
laplacian_noise = Laplace(loc=self.loc, scale=self.scale).rsample(self.size).to(self.device)
self.generator.manual_seed(self.generator.initial_seed() + 1)
torch.random.set_rng_state(rng_state)
noise += laplacian_noise
return noise / noise.std()
class StudentTNoiseGenerator(NoiseGenerator):
def __init__(self, x=None, size=None, dtype=None, layout=None, device=None, seed=42, generator=None, sigma_min=None, sigma_max=None,
loc=0, scale=0.2, df=1):
self.update(loc=loc, scale=scale, df=df)
super().__init__(x, size, dtype, layout, device, seed, generator, sigma_min, sigma_max)
def __call__(self, *, loc=None, scale=None, df=None, **kwargs):
self.update(loc=loc, scale=scale, df=df)
b, c, h, w = self.size
orig_h, orig_w = h, w
rng_state = torch.random.get_rng_state()
torch.manual_seed(self.generator.initial_seed())
noise = StudentT(loc=self.loc, scale=self.scale, df=self.df).rsample(self.size)
s = torch.quantile(noise.flatten(start_dim=1).abs(), 0.75, dim=-1)
s = s.reshape(*s.shape, 1, 1, 1)
noise = noise.clamp(-s, s)
noise_latent = torch.copysign(torch.pow(torch.abs(noise), 0.5), noise).to(self.device)
self.generator.manual_seed(self.generator.initial_seed() + 1)
torch.random.set_rng_state(rng_state)
return (noise_latent - noise_latent.mean()) / noise_latent.std()
class WaveletNoiseGenerator(NoiseGenerator):
def __init__(self, x=None, size=None, dtype=None, layout=None, device=None, seed=42, generator=None, sigma_min=None, sigma_max=None,
wavelet='haar'):
self.update(wavelet=wavelet)
super().__init__(x, size, dtype, layout, device, seed, generator, sigma_min, sigma_max)
def __call__(self, *, wavelet=None, **kwargs):
self.update(wavelet=wavelet)
b, c, h, w = self.size
orig_h, orig_w = h, w
# noise for spatial dimensions only
coeffs = pywt.wavedecn(torch.randn(self.size, dtype=self.dtype, layout=self.layout, device=self.device, generator=self.generator).to('cpu'), wavelet=self.wavelet, mode='periodization')
noise = pywt.waverecn(coeffs, wavelet=self.wavelet, mode='periodization')
noise_tensor = torch.tensor(noise, dtype=self.dtype, device=self.device)
noise_tensor = (noise_tensor - noise_tensor.mean()) / noise_tensor.std()
return noise_tensor
class PerlinNoiseGenerator(NoiseGenerator):
def __init__(self, x=None, size=None, dtype=None, layout=None, device=None, seed=42, generator=None, sigma_min=None, sigma_max=None,
detail=0.0):
self.update(detail=detail)
super().__init__(x, size, dtype, layout, device, seed, generator, sigma_min, sigma_max)
@staticmethod
def get_positions(block_shape: Tuple[int, int]) -> Tensor:
bh, bw = block_shape
positions = torch.stack(
torch.meshgrid(
[(torch.arange(b) + 0.5) / b for b in (bw, bh)],
indexing="xy",
),
-1,
).view(1, bh, bw, 1, 1, 2)
return positions
@staticmethod
def unfold_grid(vectors: Tensor) -> Tensor:
batch_size, _, gpy, gpx = vectors.shape
return (
unfold(vectors, (2, 2))
.view(batch_size, 2, 4, -1)
.permute(0, 2, 3, 1)
.view(batch_size, 4, gpy - 1, gpx - 1, 2)
)
@staticmethod
def smooth_step(t: Tensor) -> Tensor:
return t * t * (3.0 - 2.0 * t)
@staticmethod
def perlin_noise_tensor(
self,
vectors: Tensor, positions: Tensor, step: Callable = None
) -> Tensor:
if step is None:
step = self.smooth_step
batch_size = vectors.shape[0]
# grid height, grid width
gh, gw = vectors.shape[2:4]
# block height, block width
bh, bw = positions.shape[1:3]
for i in range(2):
if positions.shape[i + 3] not in (1, vectors.shape[i + 2]):
raise Exception(
f"Blocks shapes do not match: vectors ({vectors.shape[1]}, {vectors.shape[2]}), positions {gh}, {gw})"
)
if positions.shape[0] not in (1, batch_size):
raise Exception(
f"Batch sizes do not match: vectors ({vectors.shape[0]}), positions ({positions.shape[0]})"
)
vectors = vectors.view(batch_size, 4, 1, gh * gw, 2)
positions = positions.view(positions.shape[0], bh * bw, -1, 2)
step_x = step(positions[..., 0])
step_y = step(positions[..., 1])
row0 = lerp(
(vectors[:, 0] * positions).sum(dim=-1),
(vectors[:, 1] * (positions - positions.new_tensor((1, 0)))).sum(dim=-1),
step_x,
)
row1 = lerp(
(vectors[:, 2] * (positions - positions.new_tensor((0, 1)))).sum(dim=-1),
(vectors[:, 3] * (positions - positions.new_tensor((1, 1)))).sum(dim=-1),
step_x,
)
noise = lerp(row0, row1, step_y)
return (
noise.view(
batch_size,
bh,
bw,
gh,
gw,
)
.permute(0, 3, 1, 4, 2)
.reshape(batch_size, gh * bh, gw * bw)
)
def perlin_noise(
self,
grid_shape: Tuple[int, int],
out_shape: Tuple[int, int],
batch_size: int = 1,
generator: Generator = None,
*args,
**kwargs,
) -> Tensor:
gh, gw = grid_shape # grid height and width
oh, ow = out_shape # output height and width
bh, bw = oh // gh, ow // gw # block height and width
if oh != bh * gh:
raise Exception(f"Output height {oh} must be divisible by grid height {gh}")
if ow != bw * gw != 0:
raise Exception(f"Output width {ow} must be divisible by grid width {gw}")
angle = torch.empty(
[batch_size] + [s + 1 for s in grid_shape], device=self.device, *args, **kwargs
).uniform_(to=2.0 * pi, generator=self.generator)
# random vectors on grid points
vectors = self.unfold_grid(torch.stack((torch.cos(angle), torch.sin(angle)), dim=1))
# positions inside grid cells [0, 1)
positions = self.get_positions((bh, bw)).to(vectors)
return self.perlin_noise_tensor(self, vectors, positions).squeeze(0)
def __call__(self, *, detail=None, **kwargs):
self.update(detail=detail) #currently unused
b, c, h, w = self.size
orig_h, orig_w = h, w
noise = torch.randn(self.size, dtype=self.dtype, layout=self.layout, device=self.device, generator=self.generator) / 2.0
noise_size_H = noise.size(dim=2)
noise_size_W = noise.size(dim=3)
perlin = None
for i in range(2):
noise += self.perlin_noise((noise_size_H, noise_size_W), (noise_size_H, noise_size_W), batch_size=self.x.shape[1], generator=self.generator).to(self.device)
return noise / noise.std()
from functools import partial
NOISE_GENERATOR_CLASSES = {
"fractal": FractalNoiseGenerator,
"gaussian": GaussianNoiseGenerator,
"uniform": UniformNoiseGenerator,
"pyramid-cascade_B": CascadeBPyramidNoiseGenerator,
"pyramid-interpolated": InterpolatedPyramidNoiseGenerator,
"pyramid-bilinear": noise_generator_factory(PyramidNoiseGenerator, mode='bilinear'),
"pyramid-bicubic": noise_generator_factory(PyramidNoiseGenerator, mode='bicubic'),
"pyramid-nearest": noise_generator_factory(PyramidNoiseGenerator, mode='nearest'),
"hires-pyramid-bilinear": noise_generator_factory(HiresPyramidNoiseGenerator, mode='bilinear'),
"hires-pyramid-bicubic": noise_generator_factory(HiresPyramidNoiseGenerator, mode='bicubic'),
"hires-pyramid-nearest": noise_generator_factory(HiresPyramidNoiseGenerator, mode='nearest'),
"brownian": BrownianNoiseGenerator,
"laplacian": LaplacianNoiseGenerator,
"studentt": StudentTNoiseGenerator,
"wavelet": WaveletNoiseGenerator,
"perlin": PerlinNoiseGenerator,
}
NOISE_GENERATOR_CLASSES_SIMPLE = {
"none": GaussianNoiseGenerator,
"brownian": BrownianNoiseGenerator,
"gaussian": GaussianNoiseGenerator,
"laplacian": LaplacianNoiseGenerator,
"perlin": PerlinNoiseGenerator,
"studentt": StudentTNoiseGenerator,
"uniform": UniformNoiseGenerator,
"wavelet": WaveletNoiseGenerator,
"brown": noise_generator_factory(FractalNoiseGenerator, alpha=2.0),
"pink": noise_generator_factory(FractalNoiseGenerator, alpha=1.0),
"white": noise_generator_factory(FractalNoiseGenerator, alpha=0.0),
"blue": noise_generator_factory(FractalNoiseGenerator, alpha=-1.0),
"violet": noise_generator_factory(FractalNoiseGenerator, alpha=-2.0),
"hires-pyramid-bicubic": noise_generator_factory(HiresPyramidNoiseGenerator, mode='bicubic'),
"hires-pyramid-bilinear": noise_generator_factory(HiresPyramidNoiseGenerator, mode='bilinear'),
"hires-pyramid-nearest": noise_generator_factory(HiresPyramidNoiseGenerator, mode='nearest'),
"pyramid-bicubic": noise_generator_factory(PyramidNoiseGenerator, mode='bicubic'),
"pyramid-bilinear": noise_generator_factory(PyramidNoiseGenerator, mode='bilinear'),
"pyramid-nearest": noise_generator_factory(PyramidNoiseGenerator, mode='nearest'),
"pyramid-interpolated": InterpolatedPyramidNoiseGenerator,
"pyramid-cascade_B": CascadeBPyramidNoiseGenerator,
}
if OPENSIMPLEX_ENABLE:
NOISE_GENERATOR_CLASSES.update({
"simplex": SimplexNoiseGenerator,
})
NOISE_GENERATOR_NAMES = tuple(NOISE_GENERATOR_CLASSES.keys())
NOISE_GENERATOR_NAMES_SIMPLE = tuple(NOISE_GENERATOR_CLASSES_SIMPLE.keys())
@precision_tool.cast_tensor
def prepare_noise(latent_image, seed, noise_type, noise_inds=None, alpha=1.0, k=1.0): # adapted from comfy/sample.py: https://github.com/comfyanonymous/ComfyUI
#optional arg skip can be used to skip and discard x number of noise generations for a given seed
noise_func = NOISE_GENERATOR_CLASSES.get(noise_type)(x=latent_image, seed=seed, sigma_min=0.0291675, sigma_max=14.614642)
if noise_type == "fractal":
noise_func.alpha = alpha
noise_func.k = k
# from here until return is very similar to comfy/sample.py
if noise_inds is None:
return noise_func(sigma=14.614642, sigma_next=0.0291675)
unique_inds, inverse = np.unique(noise_inds, return_inverse=True)
noises = []
for i in range(unique_inds[-1]+1):
noise = noise_func(size = [1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, device=latent_image.device)
if i in unique_inds:
noises.append(noise)
noises = [noises[i] for i in inverse]
noises = torch.cat(noises, axis=0)
return noises