-
Notifications
You must be signed in to change notification settings - Fork 8
/
inverse_warp.py
235 lines (183 loc) · 8.33 KB
/
inverse_warp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from __future__ import division
import torch
import torch.nn.functional as F
pixel_coords = None
def set_id_grid(depth):
global pixel_coords
b, h, w = depth.size()
i_range = torch.arange(0, h, dtype=depth.dtype, device=depth.device).view(1, h, 1).expand(1, h, w) # [1, H, W]
j_range = torch.arange(0, w, dtype=depth.dtype, device=depth.device).view(1, 1, w).expand(1, h, w) # [1, H, W]
ones = torch.ones(1, h, w, dtype=depth.dtype, device=depth.device)
pixel_coords = torch.stack((j_range, i_range, ones), dim=1) # [1, 3, H, W]
def check_sizes(input, input_name, expected):
condition = [input.ndimension() == len(expected)]
for i,size in enumerate(expected):
if size.isdigit():
condition.append(input.size(i) == int(size))
assert(all(condition)), "wrong size for {}, expected {}, got {}".format(input_name, 'x'.join(expected), list(input.size()))
@torch.jit.script
def compensate_pose(matrices, ref_matrix):
# check_sizes(matrices, 'matrices', 'BS34')
# check_sizes(ref_matrix, 'reference matrix', 'B34')
translation_vectors = matrices[..., -1:] - ref_matrix[..., -1:].unsqueeze(1)
inverse_rot = ref_matrix[..., :-1].transpose(1, 2).unsqueeze(1)
return inverse_rot @ torch.cat([matrices[..., :-1], translation_vectors], dim=-1)
@torch.jit.script
def invert_mat(matrices):
# check_sizes(matrices, 'matrices', 'BS34')
rot_matrices = matrices[..., :-1].transpose(2, 3)
translation_vectors = - rot_matrices @ matrices[..., -1:]
return(torch.cat([rot_matrices, translation_vectors], dim=-1))
def pose_vec2mat(vec, rotation_mode='euler'):
"""
Convert 6DoF parameters to transformation matrix.
Args:s
vec: 6DoF parameters in the order of tx, ty, tz, rx, ry, rz -- [B, 6]
Returns:
A transformation matrix -- [B, 3, 4]
"""
check_sizes(vec, 'rotation vector', 'BS6')
translation = vec[:, :, :3].unsqueeze(-1) # [B, S, 3, 1]
rot = vec[:, :, 3:]
if rotation_mode == 'euler':
rot_mat = euler2mat(rot) # [B, S, 3, 3]
elif rotation_mode == 'quat':
rot_mat = quat2mat(rot) # [B, S, 3, 3]
transform_mat = torch.cat([rot_mat, translation], dim=-1) # [B, S, 3, 4]
return transform_mat
def pixel2cam(depth):
"""Transform coordinates in the pixel frame to the camera frame.
Args:
depth: depth maps -- [B, H, W]
Returns:
array of (u,v,1) cam coordinates -- [B, 3, H, W]
"""
global pixel_coords
b, h, w = depth.size()
if (pixel_coords is None) or pixel_coords.size(2) < h:
set_id_grid(depth)
pixel_coords.type_as(depth)
cam_coords = pixel_coords[..., :h, :w].expand(b, 3, h, w) * depth.unsqueeze(1)
return cam_coords.contiguous()
@torch.jit.script
def cam2pixel(cam_coords):
"""Transform coordinates in the camera frame to the pixel frame.
Args:
cam_coords: pixel coordinates defined in the first camera coordinates system -- [B, 4, H, W]
proj_c2p_rot: rotation matrix of cameras -- [B, 3, 4]
Returns:
array of [-1,1] coordinates -- [B, 2, H, W]
"""
b, _, h, w = cam_coords.size()
pcoords = cam_coords.view(b, 3, -1) # [B, 3, H*W]
X = pcoords[:, 0]
Y = pcoords[:, 1]
Z = pcoords[:, 2].clamp(min=1e-3)
X_norm = 2*(X / Z)/(w-1) - 1 # Normalized, -1 if on extreme left, 1 if on extreme right (x = w-1) [B, H*W]
Y_norm = 2*(Y / Z)/(h-1) - 1 # Idem [B, H*W]
pixel_coords = torch.stack([X_norm, Y_norm], dim=2) # [B, H*W, 2]
return pixel_coords.view(b, h, w, 2)
@torch.jit.script
def euler2mat(angle):
"""Convert euler angles to rotation matrix.
Reference: https://github.com/pulkitag/pycaffe-utils/blob/master/rot_utils.py#L174
Args:
angle: rotation angle along 3 axis (in radians) -- size = [B, S, 3]
Returns:
Rotation matrix corresponding to the euler angles -- size = [B, S, 3, 3]
"""
B, S = angle.size()[:2]
x, y, z = angle[..., 0], angle[..., 1], angle[..., 2]
cosz = torch.cos(z)
sinz = torch.sin(z)
zeros = z.detach() * 0
ones = zeros.detach() + 1
zmat = torch.stack([cosz, -sinz, zeros,
sinz, cosz, zeros,
zeros, zeros, ones], dim=-1).view(B, S, 3, 3)
cosy = torch.cos(y)
siny = torch.sin(y)
ymat = torch.stack([cosy, zeros, siny,
zeros, ones, zeros,
-siny, zeros, cosy], dim=-1).view(B, S, 3, 3)
cosx = torch.cos(x)
sinx = torch.sin(x)
xmat = torch.stack([ones, zeros, zeros,
zeros, cosx, -sinx,
zeros, sinx, cosx], dim=-1).view(B, S, 3, 3)
rotMat = xmat @ ymat @ zmat
return rotMat
@torch.jit.script
def quat2mat(quat):
"""Convert quaternion coefficients to rotation matrix.
Args:
quat: first three coeff of quaternion of rotation. fourth is then computed to have a norm of 1 -- size = [B, S, 3]
Returns:
Rotation matrix corresponding to the quaternion -- size = [B, S, 3, 3]
"""
norm_quat = torch.cat([quat[..., :1].detach() * 0 + 1, quat], dim=1)
norm_quat = norm_quat / norm_quat.norm(p=2, dim=-1, keepdim=True)
w, x, y, z = norm_quat[..., 0], norm_quat[..., 1], norm_quat[..., 2], norm_quat[..., 3]
B, S = quat.size()[:2]
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w*x, w*y, w*z
xy, xz, yz = x*y, x*z, y*z
rotMat = torch.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz,
2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx,
2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], dim=1).view(B, S, 3, 3)
return rotMat
def inverse_warp(img, depth, pose_matrix, intrinsics, rotation_mode='euler'):
"""
Inverse warp a source image to the target image plane.
Args:
img: the source image (where to sample pixels) -- [B, 3, H, W]
depth: depth map of the target image -- [B, H, W]
pose: 6DoF pose parameters from target to source -- [B, 6]
intrinsics: camera intrinsic matrix -- [B, 3, 3]
intrinsics_inv: inverse of the intrinsic matrix -- [B, 3, 3]
Returns:
Source image warped to the target image plane
"""
check_sizes(img, 'img', 'B3HW')
check_sizes(depth, 'depth', 'BHW')
check_sizes(pose_matrix, 'pose', 'B34')
check_sizes(intrinsics, 'intrinsics', 'B33')
intrinsics_inv = intrinsics.inverse()
b, h, w = depth.shape
batch_size, _, img_height, img_width = img.size()
point_cloud = pixel2cam(depth) # [B,3,H,W]
# Get projection matrix for tgt camera frame to source pixel frame
rot = intrinsics @ pose_matrix[:,:,:-1] @ intrinsics_inv # [B, 3, 3]
tr = intrinsics @ pose_matrix[:,:,-1:]
transformed_points = rot @ point_cloud.view(b, 3, -1) + tr
src_pixel_coords = cam2pixel(transformed_points.view(b, 3, h, w)) # [B,H,W,2]
projected_img = F.grid_sample(img, src_pixel_coords, padding_mode='border', align_corners=True)
with torch.no_grad():
valid_points = src_pixel_coords.abs().max(dim=-1)[0] <= 1
return projected_img, valid_points
def inverse_rotate(features, rot_matrix, intrinsics, rotation_mode='euler'):
"""
Inverse warp a source image to the target image plane.
Args:
features: the source image (where to sample pixels) -- [B, C, H, W]
depth: depth map of the target image -- [B, H, W]
pose: 6DoF pose parameters from target to source -- [B, 6]
intrinsics: camera intrinsic matrix -- [B, 3, 3]
intrinsics_inv: inverse of the intrinsic matrix -- [B, 3, 3]
Returns:
Source image warped to the target image plane
"""
check_sizes(features, 'features', 'BCHW')
check_sizes(rot_matrix, 'rotation matrix', 'B33')
check_sizes(intrinsics, 'intrinsics', 'B33')
b, _, h, w = features.size()
intrinsics_inv = intrinsics.inverse()
# construct a fake depth, with 1 everywhere
depth = features.new_ones([b, h, w])
cam_coords = pixel2cam(depth) # [B,3,H,W]
# Get projection matrix for tgt camera frame to source pixel frame
rot = intrinsics @ rot_matrix @ intrinsics_inv # [B, 3, 3]
transformed_points = rot @ cam_coords.view(b, 3, -1)
src_pixel_coords = cam2pixel(transformed_points.view(b, 3, h, w)) # [B,H,W,2]
projected_img = F.grid_sample(features, src_pixel_coords, padding_mode='border', align_corners=True)
return projected_img