forked from ProjectNUWA/DragNUWA
-
Notifications
You must be signed in to change notification settings - Fork 2
/
DragNUWA_net.py
297 lines (259 loc) · 10.9 KB
/
DragNUWA_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
from utils import *
#### SVD
from dragnuwa.svd.modules.diffusionmodules.video_model_flow import VideoUNet_flow, VideoResBlock_Embed
from dragnuwa.svd.modules.diffusionmodules.denoiser import Denoiser
from dragnuwa.svd.modules.diffusionmodules.denoiser_scaling import VScalingWithEDMcNoise
from dragnuwa.svd.modules.encoders.modules import *
from dragnuwa.svd.models.autoencoder import AutoencodingEngine
from dragnuwa.svd.modules.diffusionmodules.wrappers import OpenAIWrapper
from dragnuwa.svd.modules.diffusionmodules.sampling import EulerEDMSampler
from dragnuwa.lora import inject_trainable_lora, inject_trainable_lora_extended, extract_lora_ups_down, _find_modules
def get_gaussian_kernel(kernel_size, sigma, channels):
print('parameters of gaussian kernel: kernel_size: {}, sigma: {}, channels: {}'.format(kernel_size, sigma, channels))
x_coord = torch.arange(kernel_size)
x_grid = x_coord.repeat(kernel_size).view(kernel_size, kernel_size)
y_grid = x_grid.t()
xy_grid = torch.stack([x_grid, y_grid], dim=-1).float()
mean = (kernel_size - 1)/2.
variance = sigma**2.
gaussian_kernel = torch.exp(
-torch.sum((xy_grid - mean)**2., dim=-1) /\
(2*variance)
)
gaussian_kernel = gaussian_kernel.view(1, 1, kernel_size, kernel_size)
gaussian_kernel = gaussian_kernel.repeat(channels, 1, 1, 1)
gaussian_filter = nn.Conv2d(in_channels=channels, out_channels=channels,kernel_size=kernel_size, groups=channels, bias=False, padding=kernel_size//2)
gaussian_filter.weight.data = gaussian_kernel
gaussian_filter.weight.requires_grad = False
return gaussian_filter
def inject_lora(use_lora, model, replace_modules, is_extended=False, dropout=0.0, r=16):
injector = (
inject_trainable_lora if not is_extended
else
inject_trainable_lora_extended
)
params = None
negation = None
if use_lora:
REPLACE_MODULES = replace_modules
injector_args = {
"model": model,
"target_replace_module": REPLACE_MODULES,
"r": r
}
if not is_extended: injector_args['dropout_p'] = dropout
params, negation = injector(**injector_args)
for _up, _down in extract_lora_ups_down(
model,
target_replace_module=REPLACE_MODULES):
if all(x is not None for x in [_up, _down]):
print(f"Lora successfully injected into {model.__class__.__name__}.")
break
return params, negation
class Args:
### basic
fps = 4
height = 320
width = 576
### lora
unet_lora_rank = 32
### gaussian filter parameters
kernel_size = 199
sigma = 20
# model
denoiser_config = {
'scaling_config':{
'target': 'dragnuwa.svd.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise',
}
}
network_config = {
'adm_in_channels': 768, 'num_classes': 'sequential', 'use_checkpoint': True, 'in_channels': 8, 'out_channels': 4, 'model_channels': 320, 'attention_resolutions': [4, 2, 1], 'num_res_blocks': 2, 'channel_mult': [1, 2, 4, 4], 'num_head_channels': 64, 'use_linear_in_transformer': True, 'transformer_depth': 1, 'context_dim': 1024, 'spatial_transformer_attn_type': 'softmax-xformers', 'extra_ff_mix_layer': True, 'use_spatial_context': True, 'merge_strategy': 'learned_with_images', 'video_kernel_size': [3, 1, 1], 'flow_dim_scale': 1,
}
conditioner_emb_models = [
{'is_trainable': False,
'input_key': 'cond_frames_without_noise', # crossattn
'ucg_rate': 0.1,
'target': 'dragnuwa.svd.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder',
'params':{
'n_cond_frames': 1,
'n_copies': 1,
'open_clip_embedding_config': {
'target': 'dragnuwa.svd.modules.encoders.modules.FrozenOpenCLIPImageEmbedder',
'params': {
'freeze':True,
}
}
}
},
{'input_key': 'fps_id', # vector
'is_trainable': False,
'ucg_rate': 0.1,
'target': 'dragnuwa.svd.modules.encoders.modules.ConcatTimestepEmbedderND',
'params': {
'outdim': 256,
}
},
{'input_key': 'motion_bucket_id', # vector
'ucg_rate': 0.1,
'is_trainable': False,
'target': 'dragnuwa.svd.modules.encoders.modules.ConcatTimestepEmbedderND',
'params': {
'outdim': 256,
}
},
{'input_key': 'cond_frames', # concat
'is_trainable': False,
'ucg_rate': 0.1,
'target': 'dragnuwa.svd.modules.encoders.modules.VideoPredictionEmbedderWithEncoder',
'params': {
'en_and_decode_n_samples_a_time': 1,
'disable_encoder_autocast': True,
'n_cond_frames': 1,
'n_copies': 1,
'is_ae': True,
'encoder_config': {
'target': 'dragnuwa.svd.models.autoencoder.AutoencoderKLModeOnly',
'params': {
'embed_dim': 4,
'monitor': 'val/rec_loss',
'ddconfig': {
'attn_type': 'vanilla-xformers',
'double_z': True,
'z_channels': 4,
'resolution': 256,
'in_channels': 3,
'out_ch': 3,
'ch': 128,
'ch_mult': [1, 2, 4, 4],
'num_res_blocks': 2,
'attn_resolutions': [],
'dropout': 0.0,
},
'lossconfig': {
'target': 'torch.nn.Identity',
}
}
}
}
},
{'input_key': 'cond_aug', # vector
'ucg_rate': 0.1,
'is_trainable': False,
'target': 'dragnuwa.svd.modules.encoders.modules.ConcatTimestepEmbedderND',
'params': {
'outdim': 256,
}
}
]
first_stage_config = {
'loss_config': {'target': 'torch.nn.Identity'},
'regularizer_config': {'target': 'dragnuwa.svd.modules.autoencoding.regularizers.DiagonalGaussianRegularizer'},
'encoder_config':{'target': 'dragnuwa.svd.modules.diffusionmodules.model.Encoder',
'params': { 'attn_type':'vanilla',
'double_z': True,
'z_channels': 4,
'resolution': 256,
'in_channels': 3,
'out_ch': 3,
'ch': 128,
'ch_mult': [1, 2, 4, 4],
'num_res_blocks': 2,
'attn_resolutions': [],
'dropout': 0.0,
}
},
'decoder_config':{'target': 'dragnuwa.svd.modules.autoencoding.temporal_ae.VideoDecoder',
'params': {'attn_type': 'vanilla',
'double_z': True,
'z_channels': 4,
'resolution': 256,
'in_channels': 3,
'out_ch': 3,
'ch': 128,
'ch_mult': [1, 2, 4, 4],
'num_res_blocks': 2,
'attn_resolutions': [],
'dropout': 0.0,
'video_kernel_size': [3, 1, 1],
}
},
}
sampler_config = {
'discretization_config': {'target': 'dragnuwa.svd.modules.diffusionmodules.discretizer.EDMDiscretization',
'params': {'sigma_max': 700.0,},
},
'guider_config': {'target': 'dragnuwa.svd.modules.diffusionmodules.guiders.LinearPredictionGuider',
'params': {'max_scale':2.5,
'min_scale':1.0,
'num_frames':14},
},
'num_steps': 25,
}
scale_factor = 0.18215
num_frames = 14
### others
seed = 42
os.environ["PL_GLOBAL_SEED"] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
args = Args()
def quick_freeze(model):
for name, param in model.named_parameters():
param.requires_grad = False
return model
class Net(nn.Module):
def __init__(self, args):
super(Net, self).__init__()
self.args = args
self.device = 'cpu'
### unet
model = VideoUNet_flow(**args.network_config)
self.model = OpenAIWrapper(model)
### denoiser and sampler
self.denoiser = Denoiser(**args.denoiser_config)
self.sampler = EulerEDMSampler(**args.sampler_config)
### conditioner
self.conditioner = GeneralConditioner(args.conditioner_emb_models)
### first stage model
self.first_stage_model = AutoencodingEngine(**args.first_stage_config).eval()
self.scale_factor = args.scale_factor
self.en_and_decode_n_samples_a_time = 1 # decode 1 frame each time to save GPU memory
self.num_frames = args.num_frames
self.guassian_filter = quick_freeze(get_gaussian_kernel(kernel_size=args.kernel_size, sigma=args.sigma, channels=2))
unet_lora_params, unet_negation = inject_lora(
True, self, ['OpenAIWrapper'], is_extended=False, r=args.unet_lora_rank
)
def to(self, *args, **kwargs):
model_converted = super().to(*args, **kwargs)
self.device = next(self.parameters()).device
self.sampler.device = self.device
for embedder in self.conditioner.embedders:
if hasattr(embedder, "device"):
embedder.device = self.device
return model_converted
def train(self, *args):
super().train(*args)
self.conditioner.eval()
self.first_stage_model.eval()
def apply_gaussian_filter_on_drag(self, drag):
b, l, h, w, c = drag.shape
drag = rearrange(drag, 'b l h w c -> (b l) c h w')
drag = self.guassian_filter(drag)
drag = rearrange(drag, '(b l) c h w -> b l h w c', b=b)
return drag
@torch.no_grad()
def decode_first_stage(self, z):
z = 1.0 / self.scale_factor * z
n_samples = self.en_and_decode_n_samples_a_time # 1
n_rounds = math.ceil(z.shape[0] / n_samples)
all_out = []
for n in range(n_rounds):
kwargs = {"timesteps": len(z[n * n_samples : (n + 1) * n_samples])}
out = self.first_stage_model.decode(
z[n * n_samples : (n + 1) * n_samples], **kwargs
)
all_out.append(out)
out = torch.cat(all_out, dim=0)
return out