forked from rwth-i6/returnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
TFNetworkSegModLayer.py
481 lines (389 loc) · 19.5 KB
/
TFNetworkSegModLayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
from __future__ import print_function
import tensorflow as tf
from TFNetworkLayer import LayerBase, _ConcatInputLayer, get_concat_sources_data_template
# ---------- Utilities ----------
def batch_sizes_after_windowing(sizes, window):
"""
:param tf.Tensor sizes: (batch_sizes)
:param int window: size of the applied window
:return: sizes for each batch after applying a window on each batch
:rtype: tf.Tensor
"""
def fold_times(acc, x):
r1 = tf.tile([window], [tf.maximum(x - window + 1, 0)])
r2 = tf.range(tf.minimum(x, window - 1), 0, -1)
return tf.concat([acc, r1, r2], 0)
return tf.foldl(fold_times, sizes, tf.placeholder_with_default(tf.zeros([0], dtype='int32'), [None]), name='fold_sizes')
def batch_indices_after_windowing(sizes, window):
"""
here we compute the start and end times for each of the new batches when applying a window
:param tf.Tensor sizes: (batch_sizes)
:param int window: size of the applied window
:return: tensor of shape (?, 3), contains batch index, start-frame and end-frame for each batch after applying a window
:rtype: tf.Tensor
"""
def fold_batches(acc, x):
b = x[0]
l = x[1]
batch = tf.tile([b], [l])
start = tf.range(l)
end = tf.minimum(tf.range(window, l + window), l)
return tf.concat([acc, tf.transpose(tf.stack([batch, start, end]))], axis=0)
return tf.foldl(fold_batches, tf.stack([tf.range(tf.shape(sizes)[0]), sizes], axis=1),
tf.placeholder_with_default(tf.zeros([0, 3], dtype='int32'), [None, 3]), name="fold_batches")
# ---------- Layers ----------
class SegmentInputLayer(_ConcatInputLayer):
"""
This layer takes the input data, applies a window and outputs each window as a new batch, this is more
efficient than a window as a new dimension if sequences have varying lengths
"""
layer_class = "segment_input"
def __init__(self, window=15, **kwargs):
super(SegmentInputLayer, self).__init__(**kwargs)
sizes = self.input_data.size_placeholder[0]
new_sizes = batch_sizes_after_windowing(sizes, window)
def fold_data(acc, x):
batch_idx = x[0]
num_frames = x[1]
res = tf.expand_dims(tf.range(num_frames), -1) # start times
res = tf.tile(res, [1, window]) # fill add time dimension
res += tf.range(window) # add offsets
res = tf.where(res >= num_frames, tf.zeros_like(res), res) # filter frames that go past the end
if self.input_data.is_batch_major:
res = tf.stack([tf.ones_like(res) * batch_idx, res], axis=2) # add batch_index in first dim
else:
res = tf.stack([res, tf.ones_like(res) * batch_idx], axis=2) # add batch_index in second dim
return tf.concat([acc, res], 0)
initial = tf.placeholder_with_default((tf.zeros([0, window, 2], dtype=tf.int32)), [None, window, 2])
indices = tf.foldl(fold_data, tf.stack([tf.range(tf.shape(sizes)[0]), sizes], axis=1), initial, name='fold_data')
if self.input_data.is_time_major:
indices = tf.transpose(indices, [1, 0, 2])
self.output.placeholder = tf.gather_nd(self.input_data.placeholder, indices)
self.output.size_placeholder[0] = new_sizes
@classmethod
def get_out_data_from_opts(cls, name, sources, window, **kwargs):
out = get_concat_sources_data_template(sources, name="%s_output" % name)
out.size_placeholder = {}
out.size_placeholder[0] = None
return out
class ClassesToSegmentsLayer(_ConcatInputLayer):
"""
This layer takes a sequence of classes (=> sparse input) and applies a window (same as SegmentInput) to it.
For each position t in the window it computes the relative frequencies of the classes up to and including
that position t.
"""
layer_class = "classes_to_segments"
def __init__(self, num_classes, window=15, **kwargs):
super(ClassesToSegmentsLayer, self).__init__(**kwargs)
assert(self.input_data.sparse)
sizes = self.input_data.size_placeholder[0]
new_sizes = batch_sizes_after_windowing(sizes, window)
batches = batch_indices_after_windowing(sizes, window)
onehot = tf.one_hot(self.input_data.get_placeholder_as_batch_major(), num_classes)
def compute(x):
batch = x[0]
start = x[1]
end = x[2]
padded_onehot = tf.concat([onehot[batch][start:end],
tf.zeros([tf.maximum(window - (end - start), 0), num_classes])],
axis=0)
classes = tf.cumsum(padded_onehot)
normalization = tf.cast(tf.expand_dims(tf.range(1, window + 1), -1), classes.dtype)
return classes / normalization
self.output.placeholder = tf.map_fn(compute, batches, dtype='float32')
self.output.size_placeholder[0] = new_sizes
@classmethod
def get_out_data_from_opts(cls, name, sources, num_classes, window, **kwargs):
out = get_concat_sources_data_template(sources, name="%s_output" % name).copy_as_batch_major()
out.size_placeholder = {}
out.size_placeholder[0] = None
out.sparse = False
out.shape += (num_classes,)
out.dtype = 'float32'
out.dim = num_classes
return out
class ClassesToLengthDistributionLayer(_ConcatInputLayer):
layer_class = "classes_to_length_distribution"
def __init__(self, window=15, scale=1.0, **kwargs):
super(ClassesToLengthDistributionLayer, self).__init__(**kwargs)
assert(self.input_data.sparse)
sizes = self.input_data.size_placeholder[0]
batches = batch_indices_after_windowing(sizes, window)
new_sizes = tf.fill((tf.shape(batches)[0],), 1)
classes = self.input_data.get_placeholder_as_batch_major()
def compute(bse):
batch = bse[0]
start = bse[1]
end = bse[2]
batch_cls = classes[batch][start:end]
cls_not_eq = tf.not_equal(batch_cls[:-1], batch_cls[1:])
cls_changed = tf.concat([cls_not_eq, [True]], axis=0)
idx = tf.where(cls_changed)
count = tf.squeeze(tf.concat([[idx[0] + 1], idx[1:] - idx[:-1]], axis=0), axis=1)
freq = tf.cast(count, dtype='float32')
res = tf.scatter_nd(idx, tf.cast(count, dtype='float32') / tf.cast(end - start, dtype='float32'), (window,))
return res
self.output.placeholder = tf.expand_dims(tf.map_fn(compute, batches, back_prop=False, dtype='float32'), axis=-2)
self.output.size_placeholder[0] = new_sizes
@classmethod
def get_out_data_from_opts(cls, name, sources, window, **kwargs):
out = get_concat_sources_data_template(sources, name="%s_output" % name).copy_as_batch_major()
out.size_placeholder = {}
out.size_placeholder[0] = None
out.shape = (1, window)
out.dim = window
out.sparse = False
out.dtype = 'float32'
return out
class ClassesToLengthDistributionGlobalLayer(_ConcatInputLayer):
layer_class = "classes_to_length_distribution_global"
def __init__(self, window=15, weight_falloff=1.0, target_smoothing=None, min_length=1, broadcast_axis='time', **kwargs):
super(ClassesToLengthDistributionGlobalLayer, self).__init__(**kwargs)
assert self.input_data.sparse
assert broadcast_axis in ['time', 'feature']
sizes = self.input_data.size_placeholder[0]
batches = batch_indices_after_windowing(sizes, window)
new_sizes = tf.fill((tf.shape(batches)[0],), 1)
classes = self.input_data.get_placeholder_as_batch_major()
cls_not_eq = tf.not_equal(classes[:,:-1], classes[:,1:])
cls_changed = tf.concat([cls_not_eq, tf.fill((tf.shape(classes)[0], 1), True)], axis=1)
lengths = tf.range(0.0, float(window), 1.0)
end_distribution = tf.pow((1.0 - weight_falloff), lengths) * weight_falloff
# add small weight at the last frame in case there is no ending label, then we want the last frame to be a label end
# because the windows have different lengths the last frame might not be at index (window -1), but earlier, thus we
# also add some zeros at the end
no_label_backup = tf.convert_to_tensor([0.0] * (window - 1) + [1e-4] + [0.0] * (window - 1))
# As the label ends are not well-defined in most cases, we allow the model a little bit of wiggle-room in the
# decision where to put the label ends. This is achieved by smoothing the targets for one segment with a kernel
# that is specified by target_smoothing.
smoothing = None
if target_smoothing is not None:
import numpy as np
assert len(target_smoothing) % 2 == 1
smoothing = tf.TensorArray(dtype='float32',
size=window,
clear_after_read=False,
infer_shape=False, name='smoothing_matrices')
s = sum(target_smoothing)
target_smoothing = [v / s for v in target_smoothing]
center = len(target_smoothing) // 2
mat = np.zeros((window, window), dtype='float32')
for i, v in enumerate(target_smoothing):
mat += np.diag([v] * (window - abs(i - center)), i - center)
for i in range(window):
submat = np.diag([1.0]*window).astype('float32')
submat[:i+1,:i+1] = mat[:i+1,:i+1]
submat /= submat.sum(axis=1).reshape((-1, 1))
smoothing = smoothing.write(i, submat)
min_length_filter = tf.concat([tf.zeros((min_length - 1,), dtype='float32'), tf.ones((window - min_length + 1), dtype='float32')], axis=0)
def compute(bse):
batch = bse[0]
start = bse[1]
end = bse[2]
size = end - start
cls_chg = cls_changed[batch][start:end]
idx = tf.where(cls_chg)
res = tf.scatter_nd(idx, end_distribution[:tf.shape(idx)[0]], (window,))
if min_length > 1:
res *= min_length_filter
res += no_label_backup[window-size:2*window-size]
res = res / tf.reduce_sum(res)
if smoothing is not None:
res = tf.tensordot(res, smoothing.read(size - 1), [[0], [0]])
return res
targets = tf.map_fn(compute, batches, back_prop=False, dtype='float32')
if broadcast_axis == 'time':
self.output.placeholder = tf.expand_dims(targets, axis=-2)
elif broadcast_axis == 'feature':
self.output.placeholder = tf.expand_dims(targets, axis=-1)
self.output.size_placeholder[0] = new_sizes
@classmethod
def get_out_data_from_opts(cls, name, sources, window, broadcast_axis='time', **kwargs):
out = get_concat_sources_data_template(sources, name="%s_output" % name).copy_as_batch_major()
out.size_placeholder = {}
out.size_placeholder[0] = None
out.shape = (1, window) if broadcast_axis == 'time' else (window, 1)
out.dim = window if broadcast_axis == 'time' else 1
out.sparse = False
out.dtype = 'float32'
return out
class SegmentAlignmentLayer(_ConcatInputLayer):
layer_class = "segment_alignment"
def __init__(self, num_classes, window=15, **kwargs):
super(SegmentAlignmentLayer, self).__init__(**kwargs)
assert self.input_data.sparse
sizes = tf.div(self.input_data.size_placeholder[0], 2)
batches = batch_indices_after_windowing(sizes, window)
new_sizes = tf.fill((tf.shape(batches)[0],), window)
input = self.input_data.get_placeholder_as_batch_major()
input = tf.reshape(input, (tf.shape(input)[0], -1, 2)) # reinterpret last dimension as (dim, 2)
end_distribution = tf.convert_to_tensor([1.0] + [0.0] * (window - 1))
onehot = tf.one_hot(input[:,:,0], num_classes)
onehot = tf.pad(onehot, tf.constant([[0, 0], [0, window - 1], [0, 0]]), 'CONSTANT')
# add small weight at the last frame in case there is no ending label, then we want the last frame to be a label end
# because the windows have different lengths the last frame might not be at index (window -1), but earlier, thus we
# also add some zeros at the end
no_label_backup = tf.constant([0.0] * (window - 1) + [1e-4] + [0.0] * (window - 1))
def compute(bse):
batch = bse[0]
start = bse[1]
end = bse[2]
size = end - start
seg_ended = input[batch,start:end,1]
idx = tf.where(tf.not_equal(seg_ended, 0))
length_dist = tf.scatter_nd(idx, end_distribution[:tf.shape(idx)[0]], (window,))
length_dist += no_label_backup[window-size:2*window-size]
length_dist = length_dist / tf.reduce_sum(length_dist)
length_dist = tf.expand_dims(length_dist, -1)
result = onehot[batch,start:start+window,:] * length_dist
return result
targets = tf.map_fn(compute, batches, back_prop=False, dtype='float32')
self.output.placeholder = targets
self.output.size_placeholder[0] = new_sizes
@classmethod
def get_out_data_from_opts(cls, name, sources, num_classes, window, **kwargs):
out = get_concat_sources_data_template(sources, name="%s_output" % name).copy_as_batch_major()
out.size_placeholder = {}
out.size_placeholder[0] = None
out.shape = (window, num_classes)
out.dim = num_classes
out.sparse = False
out.dtype = 'float32'
return out
class UnsegmentInputLayer(_ConcatInputLayer):
"""
Takes the output of SegmentInput (sequences windowed over time and folded into batch-dim)
and restores the original batch dimension. The feature dimension contains window * original_features
many entries. The entries at time t all correspond to windows ending at time t. The window
that started in the same frame comes first, then the window that started in the frame before and so on.
This is also the format used for the segmental decoder in RASR.
"""
layer_class = "unsegment_input"
def __init__(self, **kwargs):
super(UnsegmentInputLayer, self).__init__(**kwargs)
sizes = self.input_data.size_placeholder[0]
end_times = tf.squeeze(tf.where(tf.equal(sizes, 1)) + 1, axis=1) # a batch of size one indicates that a sequence ended there
start_times = tf.concat([[0], end_times[:-1]], axis=0)
new_sizes = end_times - start_times
max_size = tf.reduce_max(new_sizes)
# first we shift the data in the time dimension (to get all windows that end at the same time into one batch)
data = self.input_data.get_placeholder_as_time_major()
def map_data(x):
time = x[0]
batches = x[1]
size = tf.shape(batches)[0]
out = tf.concat([batches[size-time:,:], batches[:size-time,:]], axis=0)
return out
data = tf.map_fn(map_data, [tf.range(tf.shape(data)[0]), data], dtype=self.input_data.dtype)
# now we take the start and end times that we extracted above and feed them into extract_batch, which will get
# the data for one of the original batches
def extract_batch(x):
start_batch = x[0]
end_batch = x[1]
# the next three lines are a convoluted way of writing data[:,start:end,:], but this notation did not work
start = [tf.constant( 0, dtype='int64'), start_batch, tf.constant( 0, dtype='int64')]
end = [tf.constant(-1, dtype='int64'), end_batch - start_batch, tf.constant(-1, dtype='int64')]
d = tf.slice(data, start, end)
d = tf.transpose(d, perm=[1, 0, 2])
d = tf.reshape(d, [tf.shape(d)[0], -1])
s = tf.convert_to_tensor([tf.cast(max_size - (end_batch - start_batch), dtype='int32'), tf.shape(d)[1]])
d = tf.concat([d, tf.zeros(s, dtype='float32')], axis=0)
return d
data = tf.map_fn(extract_batch, [start_times, end_times], dtype=data.dtype)
self.output.size_placeholder = {}
self.output.size_placeholder[0] = new_sizes
self.output.batch_dim_axis = 0
self.output.time_dim_axis = 1
self.output.placeholder = data
@classmethod
def get_out_data_from_opts(cls, name, sources, **kwargs):
out = get_concat_sources_data_template(sources, name="%s_output" % name).copy_as_batch_major()
out.size_placeholder[0] = None
return out
class FillUnusedMemoryLayer(_ConcatInputLayer):
"""
Fills all unused entries in the time/batch/feature tensor with a constant
"""
layer_class = "fill_unused"
def __init__(self, fill_value=0.0, **kwargs):
super(FillUnusedMemoryLayer, self).__init__(**kwargs)
mask = self.input_data.get_sequence_mask()
mask = tf.expand_dims(mask, dim=-1)
mask = tf.tile(mask, [1, 1, tf.shape(self.input_data.placeholder)[2]])
x = self.input_data.placeholder
x = tf.where(mask, x, tf.fill(tf.shape(x), float(fill_value)))
self.output.placeholder = x
self.output.size_placeholder = self.input_data.size_placeholder.copy()
@classmethod
def get_out_data_from_opts(cls, name, sources=(), **kwargs):
return get_concat_sources_data_template(sources, name="%s_output" % name)
class SwapTimeFeatureLayer(_ConcatInputLayer):
layer_class = "swap_time_feature"
def __init__(self, **kwargs):
super(SwapTimeFeatureLayer, self).__init__(**kwargs)
assert self.input_data.batch_ndim == 3
assert not self.input_data.sparse
perm = [self.input_data.batch_dim_axis, self.input_data.feature_dim_axis, self.input_data.time_dim_axis]
self.output.placeholder = tf.transpose(self.output.placeholder, perm=perm)
shape = tf.shape(self.output.placeholder)
self.output.size_placeholder[0] = tf.fill((shape[0],), value=shape[1])
self.output.dim = self.output.placeholder.get_shape()[-1].value
self.output.shape = (self.output.placeholder.get_shape()[1].value, self.output.dim)
@classmethod
def get_out_data_from_opts(cls, name, sources=(), **kwargs):
out = get_concat_sources_data_template(sources, name="%s_output" % name)
out.batch_dim_axis = 0
out.time_dim_axis = 1
out.dim = None
out.size_placeholder = {}
return out
class FlattenTimeLayer(_ConcatInputLayer):
layer_class = "flatten_time"
def __init__(self, **kwargs):
super(FlattenTimeLayer, self).__init__(**kwargs)
out = self.input_data.get_placeholder_as_batch_major()
out = tf.reshape(out, [tf.shape(out)[0], 1, -1]) # (B, 1, T*D)
self.output.placeholder = out
self.output.size_placeholder[0] = tf.ones_like(self.input_data.get_sequence_lengths())
@classmethod
def get_out_data_from_opts(cls, name, sources, **kwargs):
out = get_concat_sources_data_template(sources, name="%s_output" % name).copy_as_batch_major()
out.dim = None
out.shape = (1, None)
out.size_placeholder = {}
return out
class ApplyLengthDistributionLayer(LayerBase):
layer_class = "apply_length_distribution"
def __init__(self, length_model_scale=1.0, **kwargs):
super(ApplyLengthDistributionLayer, self).__init__(**kwargs)
self.output = self.sources[0].output.copy()
len_dist_layer = self.sources[1]
perm = []
if self.output.is_batch_major:
perm.append(len_dist_layer.output.batch_dim_axis)
perm.append(len_dist_layer.output.feature_dim_axis)
else:
perm.append(len_dist_layer.output.feature_dim_axis)
perm.append(len_dist_layer.output.batch_dim_axis)
perm.append(len_dist_layer.output.time_dim_axis)
len_mod = tf.transpose(len_dist_layer.output.placeholder, perm=perm)
if length_model_scale != 1.0:
len_mod = tf.pow(len_mod, length_model_scale)
self.output.placeholder *= len_mod
@classmethod
def get_out_data_from_opts(cls, name, sources, **kwargs):
return sources[0].output.copy()
class NormalizeLengthScoresLayer(LayerBase):
layer_class = "normalize_length_scores"
def __init__(self, **kwargs):
super(NormalizeLengthScoresLayer, self).__init__(**kwargs)
time_axis = 0 if self.sources[0].output.is_time_major else 1
batch_axis = 1 if self.sources[0].output.is_time_major else 0
self.output = self.sources[0].output.copy()
p = self.sources[0].output.placeholder
win_size = tf.cast(tf.shape(p)[time_axis], dtype=tf.float32)
s = tf.log(p) * tf.expand_dims(tf.expand_dims(tf.range(win_size, dtype=tf.float32) + 1.0, -1), batch_axis)
self.output.placeholder = tf.exp(s)
@classmethod
def get_out_data_from_opts(cls, name, sources, **kwargs):
return sources[0].output.copy()