forked from yqhu/profiler-workshop
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mnist_pl.py
162 lines (133 loc) · 5.74 KB
/
mnist_pl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Based on: https://github.com/pytorch/examples/blob/master/mnist/main.py
import argparse
from pytorch_lightning import callbacks
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
import pytorch_lightning as pl
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
class LitClassifier(pl.LightningModule):
def __init__(self, args):
super().__init__()
self.args = args
self.save_hyperparameters()
self.model = Net()
def forward(self, x):
x = self.model(x)
return x
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = F.nll_loss(y_hat, y)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
acc = self.accuracy(logits, y)
return acc
def test_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
acc = self.accuracy(logits, y)
return acc
def accuracy(self, logits, y):
acc = torch.sum(torch.eq(torch.argmax(logits, -1), y).to(torch.float32)) / len(y)
return acc
def validation_epoch_end(self, outputs) -> None:
self.log("val_acc", torch.stack(outputs).mean(), prog_bar=True)
def test_epoch_end(self, outputs) -> None:
self.log("test_acc", torch.stack(outputs).mean())
def configure_optimizers(self):
optimizer = optim.Adadelta(self.model.parameters(), lr=self.args.lr)
scheduler = StepLR(optimizer, step_size=1, gamma=self.args.gamma)
return [optimizer], [scheduler]
class ProfCallback(pl.Callback):
def __init__(self, prof):
self.prof = prof
def on_train_batch_end(self, *args, **kwargs):
self.prof.step()
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
help='learning rate (default: 1.0)')
parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
help='Learning rate step gamma (default: 0.7)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--dry-run', action='store_true', default=False,
help='quickly check a single pass')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
args = parser.parse_args()
print(args)
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
train_kwargs = {'batch_size': args.batch_size}
test_kwargs = {'batch_size': args.test_batch_size}
if use_cuda:
cuda_kwargs = {'num_workers': 2,
'pin_memory': True,
'shuffle': True}
train_kwargs.update(cuda_kwargs)
cuda_kwargs = {'num_workers': 2,
'pin_memory': True,
'shuffle': False}
test_kwargs.update(cuda_kwargs)
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
dataset1 = datasets.MNIST('../data', train=True, download=True,
transform=transform)
dataset2 = datasets.MNIST('../data', train=False,
transform=transform)
train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs)
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)
model = LitClassifier(args)
with torch.profiler.profile(activities=[torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA],
schedule=torch.profiler.schedule(wait=1, warmup=2, active=3, repeat=1),
on_trace_ready=torch.profiler.tensorboard_trace_handler('mnist-pl'),
profile_memory=True,
with_stack=False,
record_shapes=True) as prof:
trainer = pl.Trainer(max_epochs=args.epochs, strategy='ddp', accelerator='gpu', gpus=4, callbacks=[ProfCallback(prof)])
trainer.fit(model, train_loader, test_loader)
trainer.test(dataloaders=test_loader)
if __name__ == '__main__':
main()