forked from yqhu/profiler-workshop
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cifar10_deepspeed.py
executable file
·386 lines (317 loc) · 13.4 KB
/
cifar10_deepspeed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import torch
import torchvision
import torchvision.transforms as transforms
import argparse
import deepspeed
def add_argument():
parser = argparse.ArgumentParser(description='CIFAR')
#data
# cuda
parser.add_argument('--with_cuda',
default=False,
action='store_true',
help='use CPU in case there\'s no GPU support')
parser.add_argument('--use_ema',
default=False,
action='store_true',
help='whether use exponential moving average')
# train
parser.add_argument('-b',
'--batch_size',
default=32,
type=int,
help='mini-batch size (default: 32)')
parser.add_argument('-e',
'--epochs',
default=30,
type=int,
help='number of total epochs (default: 30)')
parser.add_argument('--local_rank',
type=int,
default=-1,
help='local rank passed from distributed launcher')
parser.add_argument('--log-interval',
type=int,
default=2000,
help="output logging information at a given interval")
parser.add_argument('--moe',
default=False,
action='store_true',
help='use deepspeed mixture of experts (moe)')
parser.add_argument('--ep-world-size',
default=1,
type=int,
help='(moe) expert parallel world size')
parser.add_argument('--num-experts',
default=1,
type=int,
help='(moe) number of total experts')
parser.add_argument('--top-k',
default=1,
type=int,
help='(moe) gating top 1 and 2 supported')
parser.add_argument(
'--min-capacity',
default=0,
type=int,
help=
'(moe) minimum capacity of an expert regardless of the capacity_factor'
)
parser.add_argument(
'--noisy-gate-policy',
default=None,
type=str,
help=
'(moe) noisy gating (only supported with top-1). Valid values are None, RSample, and Jitter'
)
parser.add_argument(
'--moe-param-group',
default=False,
action='store_true',
help=
'(moe) create separate moe param groups, required when using ZeRO w. MoE'
)
# Include DeepSpeed configuration arguments
parser = deepspeed.add_config_arguments(parser)
args = parser.parse_args()
return args
deepspeed.init_distributed()
########################################################################
# The output of torchvision datasets are PILImage images of range [0, 1].
# We transform them to Tensors of normalized range [-1, 1].
# .. note::
# If running on Windows and you get a BrokenPipeError, try setting
# the num_worker of torch.utils.data.DataLoader() to 0.
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
if torch.distributed.get_rank() != 0:
# might be downloading cifar data, let rank 0 download first
torch.distributed.barrier()
trainset = torchvision.datasets.CIFAR10(root='./data',
train=True,
download=True,
transform=transform)
if torch.distributed.get_rank() == 0:
# cifar data is downloaded, indicate other ranks can proceed
torch.distributed.barrier()
trainloader = torch.utils.data.DataLoader(trainset,
batch_size=16,
shuffle=True,
num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data',
train=False,
download=True,
transform=transform)
testloader = torch.utils.data.DataLoader(testset,
batch_size=4,
shuffle=False,
num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse',
'ship', 'truck')
########################################################################
# Let us show some of the training images, for fun.
import matplotlib.pyplot as plt
import numpy as np
# functions to show an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
########################################################################
# 2. Define a Convolutional Neural Network
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Copy the neural network from the Neural Networks section before and modify it to
# take 3-channel images (instead of 1-channel images as it was defined).
import torch.nn as nn
import torch.nn.functional as F
args = add_argument()
if args.moe:
deepspeed.utils.groups.initialize(ep_size=args.ep_world_size)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
if args.moe:
self.fc3 = nn.Linear(84, 84)
self.fc3 = deepspeed.moe.layer.MoE(
hidden_size=84,
expert=self.fc3,
num_experts=args.num_experts,
k=args.top_k,
min_capacity=args.min_capacity,
noisy_gate_policy=args.noisy_gate_policy)
self.fc4 = nn.Linear(84, 10)
else:
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
if args.moe:
x, _, _ = self.fc3(x)
x = self.fc4(x)
else:
x = self.fc3(x)
return x
net = Net()
def create_moe_param_groups(model):
from deepspeed.moe.utils import is_moe_param
params_with_weight_decay = {'params': [], 'name': 'weight_decay_params'}
moe_params_with_weight_decay = {
'params': [],
'moe': True,
'name': 'weight_decay_moe_params'
}
for module_ in model.modules():
moe_params_with_weight_decay['params'].extend([
p for n, p in list(module_._parameters.items())
if p is not None and is_moe_param(p)
])
params_with_weight_decay['params'].extend([
p for n, p in list(module_._parameters.items())
if p is not None and not is_moe_param(p)
])
return params_with_weight_decay, moe_params_with_weight_decay
parameters = filter(lambda p: p.requires_grad, net.parameters())
if args.moe_param_group:
parameters = create_moe_param_groups(net)
# Initialize DeepSpeed to use the following features
# 1) Distributed model
# 2) Distributed data loader
# 3) DeepSpeed optimizer
model_engine, optimizer, trainloader, __ = deepspeed.initialize(
args=args, model=net, model_parameters=parameters, training_data=trainset)
fp16 = model_engine.fp16_enabled()
print(f'fp16={fp16}')
#device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#net.to(device)
########################################################################
# 3. Define a Loss function and optimizer
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Let's use a Classification Cross-Entropy loss and SGD with momentum.
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
#optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
########################################################################
# 4. Train the network
# ^^^^^^^^^^^^^^^^^^^^
#
# This is when things start to get interesting.
# We simply have to loop over our data iterator, and feed the inputs to the
# network and optimize.
with torch.profiler.profile(activities=[torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA],
schedule=torch.profiler.schedule(wait=1, warmup=1, active=3, repeat=2),
on_trace_ready=torch.profiler.tensorboard_trace_handler('cifar10-ds'),
profile_memory=True,
with_stack=False,
record_shapes=False) as prof:
for epoch in range(1): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data[0].to(model_engine.local_rank), data[1].to(
model_engine.local_rank)
if fp16:
inputs = inputs.half()
outputs = model_engine(inputs)
loss = criterion(outputs, labels)
model_engine.backward(loss)
model_engine.step()
prof.step()
# print statistics
running_loss += loss.item()
if i % args.log_interval == (
args.log_interval -
1): # print every log_interval mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / args.log_interval))
running_loss = 0.0
print('Finished Training')
########################################################################
# 5. Test the network on the test data
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# We have trained the network for 2 passes over the training dataset.
# But we need to check if the network has learnt anything at all.
#
# We will check this by predicting the class label that the neural network
# outputs, and checking it against the ground-truth. If the prediction is
# correct, we add the sample to the list of correct predictions.
#
# Okay, first step. Let us display an image from the test set to get familiar.
dataiter = iter(testloader)
images, labels = dataiter.next()
# print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
########################################################################
# Okay, now let us see what the neural network thinks these examples above are:
if fp16:
images = images.half()
outputs = net(images.to(model_engine.local_rank))
########################################################################
# The outputs are energies for the 10 classes.
# The higher the energy for a class, the more the network
# thinks that the image is of the particular class.
# So, let's get the index of the highest energy:
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4)))
########################################################################
# The results seem pretty good.
#
# Let us look at how the network performs on the whole dataset.
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
if fp16:
images = images.half()
outputs = net(images.to(model_engine.local_rank))
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels.to(
model_engine.local_rank)).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' %
(100 * correct / total))
########################################################################
# That looks way better than chance, which is 10% accuracy (randomly picking
# a class out of 10 classes).
# Seems like the network learnt something.
#
# Hmmm, what are the classes that performed well, and the classes that did
# not perform well:
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
if fp16:
images = images.half()
outputs = net(images.to(model_engine.local_rank))
_, predicted = torch.max(outputs, 1)
c = (predicted == labels.to(model_engine.local_rank)).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' %
(classes[i], 100 * class_correct[i] / class_total[i]))