-
Notifications
You must be signed in to change notification settings - Fork 0
/
coverage_plotting.R
executable file
·119 lines (100 loc) · 4.3 KB
/
coverage_plotting.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#!/usr/bin/env Rscript
# This script takes output .hist.all.txt files from sequence_handling coverage_mapping and
# generates coverage summary plots.
# Usage:
# ./coverage_plotting.R [hist_dir] [project] [out_dir]
# Where:
# 1) [hist_dir] is the full filepath to directory containing .hist.all.txt files
# Note: Exclude the last '/' at the end of the filepath. Script adds the slash at the end.
# 2) [project] is the project name, this will be used as prefix for plot filenames.
# 3) [out_dir] is the full directory to where our plots should output to.
# Note: Exclude the last '/' at the end of the filepath. Script adds the slash at the end.
# IMPORTANT: This script assumes you have run the following command:
# to pull out histogram summarizing coverage among "all" features in A
# grep ^all ${out_dir}/Histograms/${sampleName}.hist > ${out_dir}/Histograms/${sampleName}.hist.all.txt
# Code adapted from:
# https://www.gettinggeneticsdone.com/2014/03/visualize-coverage-exome-targeted-ngs-bedtools.html
library(RColorBrewer)
library(ggplot2)
library(data.table)
readHistFiles <- function(hist_dir, fp) {
# Read in coverage histogram file
cov <- list()
# Using fread to read in file instead of read.table or read.delim2
# because fread is significantly faster than both
for (i in 1:length(fp)) {
cov[[i]] <- fread(file = fp[i], header = FALSE, sep = "\t")
}
return(cov)
}
plotCoverage <- function(cov, cov_cumulative, max_depth, cols_more, labs, main_title) {
# Create plot area, but do not plot anything. Add gridlines and axis labels.
plot(
as.numeric(as.character(unlist(cov[[1]][2:max_depth, 2]))),
as.numeric(as.character(unlist(cov_cumulative[[1]][1:max_depth-1]))),
type='n', xlab="Depth", ylab=expression("Fraction of capture target bases" >= "depth"),
ylim=c(0,1.0), main=main_title
)
abline(v = 20, col = "gray60")
abline(v = 50, col = "gray60")
abline(v = 80, col = "gray60")
abline(v = 100, col = "gray60")
abline(h = 0.50, col = "gray60")
abline(h = 0.90, col = "gray60")
axis(1, at=c(20,50,80), labels=c(20,50,80))
axis(2, at=c(0.90), labels=c(0.90))
axis(2, at=c(0.50), labels=c(0.50))
# Actually plot the data for each alignment (stored in lists)
for (i in 1:length(cov)) {
points(
as.numeric(as.character(unlist(cov[[i]][2:max_depth, 2]))),
as.numeric(as.character(unlist(cov_cumulative[[i]][1:max_depth-1]))),
type = 'l',
lwd = 2.5,
col = cols_more[[i]]
)
}
# Add a legend using the nice sample labeles rather than the full filenames.
legend("topright", legend=labs, col=cols_more, lty=1, lwd=4, ncol = 4, cex = 0.6)
}
main <- function() {
# Take command line arguments
args <- commandArgs(trailingOnly = TRUE)
# User provided command line arguments
hist_dir <- args[1]
project <- args[2]
out_dir <- args[3]
# Prepping filepaths
files <- list.files(path = hist_dir, pattern = ".hist")
fp <- paste0(hist_dir, "/", files)
# Read in files and do some processing
cov <- readHistFiles(hist_dir, fp)
# Get cumulative coverage for each alignment
cov_cumulative <- list()
for (i in 1:length(fp)) {
cov_cumulative[[i]] <- 1-cumsum(cov[[i]][,5])
}
# Prep legend labels for each sample
sample_names <- basename(fp)
labs <- gsub(pattern = ".hist", replacement = "", x = sample_names)
# Pick some colors
# "Dark2" color palette has a limit of 8 colors
cols <- brewer.pal(8, "Dark2")
# Here is a trick to add more than 8 colors
cols_more <- colorRampPalette(cols)(length(cov))
# Save plot to PDF
pdf(file = paste0(out_dir, "/", project, "_coverage_plot-maxdepth.pdf"),
width = 10, height = 7)
# Plot all the way until maximum depth
plotCoverage(cov, cov_cumulative, max_depth = length(cov[[1]]$V2), cols_more, labs,
main_title = "Target Region Coverage")
dev.off()
# Save plot to PDF
pdf(file = paste0(out_dir, "/", project, "_coverage_plot-depth120.pdf"),
width = 10, height = 7)
# Plot only until depth of 120
plotCoverage(cov, cov_cumulative, max_depth = 120, cols_more, labs,
main_title = "Target Region Coverage")
dev.off()
}
main() # Run the program