diff --git a/tests/test_unet_translation.py b/tests/test_unet_translation.py new file mode 100644 index 0000000..058b179 --- /dev/null +++ b/tests/test_unet_translation.py @@ -0,0 +1,81 @@ +import jax +import jax.numpy as jnp +import pytest + +import pdequinox as pdeqx + + +@pytest.mark.parametrize( + "num_spatial_dims,num_points,num_levels", + [ + (num_spatial_dims, num_points, num_levels) + for num_spatial_dims in (1, 2, 3) + for num_points in (36,) + for num_levels in (0, 1, 2) + ], +) +def test_unet_translation(num_spatial_dims: int, num_points: int, num_levels: int): + grid_1d = jnp.linspace(0, 1.0, num_points, endpoint=False) + + grid = jnp.stack( + jnp.meshgrid(*[grid_1d for _ in range(num_spatial_dims)], indexing="ij") + ) + + u_0 = jnp.sin(2 * jnp.pi * grid[0:1]) + + if num_spatial_dims >= 2: + u_0 *= jnp.sin(4 * jnp.pi * grid[1:2]) + + if num_spatial_dims >= 3: + u_0 *= jnp.sin(6 * jnp.pi * grid[2:3]) + + unet = pdeqx.arch.ClassicUNet( + num_spatial_dims, + 1, + 1, + hidden_channels=1, + num_levels=num_levels, + use_norm=False, + key=jax.random.PRNGKey(0), + ) + + # Change all kernels to identity and biases to zero + arr, structure = jax.tree.flatten(unet) + + arr_new = [] + + for a in arr: + if isinstance(a, jnp.ndarray): + if a.ndim == num_spatial_dims + 1: + # Bias + arr_new.append(jnp.zeros_like(a)) + elif a.ndim == num_spatial_dims + 2: + # Convolutional kernel + new_kernel = jnp.zeros_like(a) + if a.shape[-1] == 3: + if num_spatial_dims == 1: + new_kernel = new_kernel.at[..., 1].set(1.0) + elif num_spatial_dims == 2: + new_kernel = new_kernel.at[..., 1, 1].set(1.0) + elif num_spatial_dims == 3: + new_kernel = new_kernel.at[..., 1, 1, 1].set(1.0) + elif a.shape[-1] == 1: + new_kernel = new_kernel.at[..., 0].set(1.0) + else: + raise ValueError(f"Invalid kernel shape {a.shape}") + arr_new.append(new_kernel) + else: + arr_new.append(a) + + print(arr_new) + + unet_new = jax.tree_util.tree_unflatten(structure, arr_new) + + u_0_processed = unet_new(u_0) + + if num_spatial_dims == 1: + assert u_0_processed[..., 1] == pytest.approx(u_0[..., 1]) + elif num_spatial_dims == 2: + assert u_0_processed[..., 1, 1] == pytest.approx(u_0[..., 1, 1]) + elif num_spatial_dims == 3: + assert u_0_processed[..., 1, 1, 1] == pytest.approx(u_0[..., 1, 1, 1])