diff --git a/exponax/stepper/generic/_convection.py b/exponax/stepper/generic/_convection.py index b4241f4..82b9e29 100644 --- a/exponax/stepper/generic/_convection.py +++ b/exponax/stepper/generic/_convection.py @@ -10,7 +10,7 @@ class GeneralConvectionStepper(BaseStepper): - coefficients: tuple[float, ...] + linear_coefficients: tuple[float, ...] convection_scale: float dealiasing_fraction: float single_channel: bool @@ -23,7 +23,7 @@ def __init__( num_points: int, dt: float, *, - coefficients: tuple[float, ...] = (0.0, 0.0, 0.01), + linear_coefficients: tuple[float, ...] = (0.0, 0.0, 0.01), convection_scale: float = 1.0, single_channel: bool = False, conservative: bool = False, @@ -74,7 +74,7 @@ def __init__( in each dimension is the same. Hence, the total number of degrees of freedom is `Nᵈ`. - `dt`: The timestep size `Δt` between two consecutive states. - - `coefficients` (keyword-only): The list of coefficients `a_j` + - `linear_coefficients` (keyword-only): The list of coefficients `a_j` corresponding to the derivatives. The length of this tuple represents the highest occuring derivative. The default value `(0.0, 0.0, 0.01)` corresponds to the Burgers equation (because of the @@ -103,7 +103,7 @@ def __init__( coefficients of the exponential time differencing Runge Kutta method. Default: 1.0. """ - self.coefficients = coefficients + self.linear_coefficients = linear_coefficients self.convection_scale = convection_scale self.single_channel = single_channel self.dealiasing_fraction = dealiasing_fraction @@ -136,7 +136,7 @@ def _build_linear_operator( axis=0, keepdims=True, ) - for i, c in enumerate(self.coefficients) + for i, c in enumerate(self.linear_coefficients) ) return linear_operator @@ -156,7 +156,7 @@ def _build_nonlinear_fun( class NormalizedConvectionStepper(GeneralConvectionStepper): - normalized_coefficients: tuple[float, ...] + normalized_linear_coefficients: tuple[float, ...] normalized_convection_scale: float def __init__( @@ -164,7 +164,7 @@ def __init__( num_spatial_dims: int, num_points: int, *, - normalized_coefficients: tuple[float, ...] = (0.0, 0.0, 0.01 * 0.1), + normalized_linear_coefficients: tuple[float, ...] = (0.0, 0.0, 0.01 * 0.1), normalized_convection_scale: float = 1.0 * 0.1, single_channel: bool = False, conservative: bool = False, @@ -205,7 +205,7 @@ def __init__( boundary point. In higher dimensions; the number of points in each dimension is the same. Hence, the total number of degrees of freedom is `Nᵈ`. - - `normalized_coefficients`: The list of coefficients + - `normalized_linear_coefficients`: The list of coefficients `α_j` corresponding to the derivatives. The length of this tuple represents the highest occuring derivative. The default value `(0.0, 0.0, 0.01)` corresponds to the Burgers equation (because of the @@ -235,14 +235,14 @@ def __init__( coefficients of the exponential time differencing Runge Kutta method. Default: 1.0. """ - self.normalized_coefficients = normalized_coefficients + self.normalized_linear_coefficients = normalized_linear_coefficients self.normalized_convection_scale = normalized_convection_scale super().__init__( num_spatial_dims=num_spatial_dims, domain_extent=1.0, # Derivative operator is just scaled with 2 * jnp.pi num_points=num_points, dt=1.0, - coefficients=normalized_coefficients, + linear_coefficients=normalized_linear_coefficients, convection_scale=normalized_convection_scale, order=order, dealiasing_fraction=dealiasing_fraction, @@ -364,7 +364,7 @@ def __init__( super().__init__( num_spatial_dims=num_spatial_dims, num_points=num_points, - normalized_coefficients=normalized_coefficients, + normalized_linear_coefficients=normalized_coefficients, normalized_convection_scale=normalized_convection_scale, single_channel=single_channel, order=order, diff --git a/exponax/stepper/generic/_gradient_norm.py b/exponax/stepper/generic/_gradient_norm.py index cd6e299..3df31a8 100644 --- a/exponax/stepper/generic/_gradient_norm.py +++ b/exponax/stepper/generic/_gradient_norm.py @@ -10,7 +10,7 @@ class GeneralGradientNormStepper(BaseStepper): - coefficients: tuple[float, ...] + linear_coefficients: tuple[float, ...] gradient_norm_scale: float dealiasing_fraction: float @@ -21,7 +21,7 @@ def __init__( num_points: int, dt: float, *, - coefficients: tuple[float, ...] = (0.0, 0.0, -1.0, 0.0, -1.0), + linear_coefficients: tuple[float, ...] = (0.0, 0.0, -1.0, 0.0, -1.0), gradient_norm_scale: float = 1.0, order=2, dealiasing_fraction: float = 2 / 3, @@ -66,7 +66,7 @@ def __init__( in each dimension is the same. Hence, the total number of degrees of freedom is `Nᵈ`. - `dt`: The timestep size `Δt` between two consecutive states. - - `coefficients` (keyword-only): The list of coefficients `a_j` + - `linear_coefficients` (keyword-only): The list of coefficients `a_j` corresponding to the derivatives. The length of this tuple represents the highest occuring derivative. The default value `(0.0, 0.0, -1.0, 0.0, -1.0)` corresponds to the Kuramoto- Sivashinsky @@ -89,7 +89,7 @@ def __init__( coefficients of the exponential time differencing Runge Kutta method. Default: 1.0. """ - self.coefficients = coefficients + self.linear_coefficients = linear_coefficients self.gradient_norm_scale = gradient_norm_scale self.dealiasing_fraction = dealiasing_fraction super().__init__( @@ -113,7 +113,7 @@ def _build_linear_operator( axis=0, keepdims=True, ) - for i, c in enumerate(self.coefficients) + for i, c in enumerate(self.linear_coefficients) ) return linear_operator @@ -132,7 +132,7 @@ def _build_nonlinear_fun( class NormalizedGradientNormStepper(GeneralGradientNormStepper): - normalized_coefficients: tuple[float, ...] + normalized_linear_coefficients: tuple[float, ...] normalized_gradient_norm_scale: float def __init__( @@ -140,7 +140,7 @@ def __init__( num_spatial_dims: int, num_points: int, *, - normalized_coefficients: tuple[float, ...] = ( + normalized_linear_coefficients: tuple[float, ...] = ( 0.0, 0.0, -1.0 * 0.1 / (60.0**2), @@ -217,14 +217,14 @@ def __init__( coefficients of the exponential time differencing Runge Kutta method. Default: 1.0. """ - self.normalized_coefficients = normalized_coefficients + self.normalized_linear_coefficients = normalized_linear_coefficients self.normalized_gradient_norm_scale = normalized_gradient_norm_scale super().__init__( num_spatial_dims=num_spatial_dims, domain_extent=1.0, num_points=num_points, dt=1.0, - coefficients=normalized_coefficients, + linear_coefficients=normalized_linear_coefficients, gradient_norm_scale=normalized_gradient_norm_scale, order=order, dealiasing_fraction=dealiasing_fraction, @@ -339,7 +339,7 @@ def __init__( super().__init__( num_spatial_dims=num_spatial_dims, num_points=num_points, - normalized_coefficients=normalized_coefficients, + normalized_linear_coefficients=normalized_coefficients, normalized_gradient_norm_scale=normalized_gradient_norm_scale, order=order, dealiasing_fraction=dealiasing_fraction, diff --git a/exponax/stepper/generic/_linear.py b/exponax/stepper/generic/_linear.py index 2c9fc15..8a35dca 100644 --- a/exponax/stepper/generic/_linear.py +++ b/exponax/stepper/generic/_linear.py @@ -11,7 +11,7 @@ class GeneralLinearStepper(BaseStepper): - coefficients: tuple[float, ...] + linear_coefficients: tuple[float, ...] def __init__( self, @@ -20,7 +20,7 @@ def __init__( num_points: int, dt: float, *, - coefficients: tuple[float, ...] = (0.0, -0.1, 0.01), + linear_coefficients: tuple[float, ...] = (0.0, -0.1, 0.01), ): """ General timestepper for a d-dimensional (`d ∈ {1, 2, 3}`) linear @@ -67,7 +67,7 @@ def __init__( number of points in each dimension is the same. Hence, the total number of degrees of freedom is `Nᵈ`. - `dt`: The timestep size `Δt` between two consecutive states. - - `coefficients` (keyword-only): The list of coefficients `a_j` + - `linear_coefficients` (keyword-only): The list of coefficients `a_j` corresponding to the derivatives. Default: `[0.0, -0.1, 0.01]`. **Notes:** @@ -137,7 +137,7 @@ def __init__( the function [`exponax.stepper.generic.normalize_coefficients`][] to obtain the normalized coefficients. """ - self.coefficients = coefficients + self.linear_coefficients = linear_coefficients super().__init__( num_spatial_dims=num_spatial_dims, domain_extent=domain_extent, @@ -157,7 +157,7 @@ def _build_linear_operator( axis=0, keepdims=True, ) - for i, c in enumerate(self.coefficients) + for i, c in enumerate(self.linear_coefficients) ) return linear_operator @@ -172,14 +172,14 @@ def _build_nonlinear_fun( class NormalizedLinearStepper(GeneralLinearStepper): - normalized_coefficients: tuple[float, ...] + normalized_linear_coefficients: tuple[float, ...] def __init__( self, num_spatial_dims: int, num_points: int, *, - normalized_coefficients: tuple[float, ...] = (0.0, -0.5, 0.01), + normalized_linear_coefficients: tuple[float, ...] = (0.0, -0.5, 0.01), ): """ Timestepper for d-dimensional (`d ∈ {1, 2, 3}`) linear PDEs on periodic @@ -218,25 +218,25 @@ def __init__( dynamics. This must a tuple of floats. The length of the tuple defines the highest occuring linear derivative in the PDE. """ - self.normalized_coefficients = normalized_coefficients + self.normalized_linear_coefficients = normalized_linear_coefficients super().__init__( num_spatial_dims=num_spatial_dims, domain_extent=1.0, num_points=num_points, dt=1.0, - coefficients=normalized_coefficients, + linear_coefficients=normalized_linear_coefficients, ) class DifficultyLinearStepper(NormalizedLinearStepper): - difficulties: tuple[float, ...] + linear_difficulties: tuple[float, ...] def __init__( self, num_spatial_dims: int = 1, num_points: int = 48, *, - difficulties: tuple[float, ...] = (0.0, -2.0), + linear_difficulties: tuple[float, ...] = (0.0, -2.0), ): """ Timestepper for d-dimensional (`d ∈ {1, 2, 3}`) linear PDEs on periodic @@ -275,9 +275,9 @@ def __init__( be a tuple of floats. The length of the tuple defines the highest occuring linear derivative in the PDE. Default is `(0.0, -2.0)`. """ - self.difficulties = difficulties + self.linear_difficulties = linear_difficulties normalized_coefficients = extract_normalized_coefficients_from_difficulty( - difficulties, + linear_difficulties, num_spatial_dims=num_spatial_dims, num_points=num_points, ) @@ -285,7 +285,7 @@ def __init__( super().__init__( num_spatial_dims=num_spatial_dims, num_points=num_points, - normalized_coefficients=normalized_coefficients, + normalized_linear_coefficients=normalized_coefficients, ) @@ -318,7 +318,7 @@ def __init__( """ difficulties = (0.0,) * (order) + (difficulty,) super().__init__( - difficulties=difficulties, + linear_difficulties=difficulties, num_spatial_dims=num_spatial_dims, num_points=num_points, ) diff --git a/exponax/stepper/generic/_nonlinear.py b/exponax/stepper/generic/_nonlinear.py index 5c3e875..45fd76c 100644 --- a/exponax/stepper/generic/_nonlinear.py +++ b/exponax/stepper/generic/_nonlinear.py @@ -10,8 +10,8 @@ class GeneralNonlinearStepper(BaseStepper): - coefficients_linear: tuple[float, ...] - coefficients_nonlinear: tuple[float, float, float] + linear_coefficients: tuple[float, ...] + nonlinear_coefficients: tuple[float, float, float] dealiasing_fraction: float def __init__( @@ -21,8 +21,8 @@ def __init__( num_points: int, dt: float, *, - coefficients_linear: tuple[float, ...] = (0.0, 0.0, 0.01), - coefficients_nonlinear: tuple[float, float, float] = (0.0, -1.0, 0.0), + linear_coefficients: tuple[float, ...] = (0.0, 0.0, 0.01), + nonlinear_coefficients: tuple[float, float, float] = (0.0, -1.0, 0.0), order=2, dealiasing_fraction: float = 2 / 3, num_circle_points: int = 16, @@ -83,12 +83,12 @@ def __init__( dimension is the same. Hence, the total number of degrees of freedom is `Nᵈ`. - `dt`: The timestep size `Δt` between two consecutive states. - - `coefficients_linear`: The list of coefficients `a_j` corresponding to + - `linear_coefficients`: The list of coefficients `a_j` corresponding to the derivatives. The length of this tuple represents the highest occuring derivative. The default value `(0.0, 0.0, 0.01)` together - with the default `coefficients_nonlinear` corresponds to the Burgers + with the default `nonlinear_coefficients` corresponds to the Burgers equation. - - `coefficients_nonlinear`: The list of coefficients `b₀`, `b₁`, `b₂` + - `nonlinear_coefficients`: The list of coefficients `b₀`, `b₁`, `b₂` (in this order). The default value `(0.0, -1.0, 0.0)` corresponds to a (single-channel) convection nonlinearity scaled with `1.0`. Note that all nonlinear contributions are considered to be on the @@ -107,12 +107,12 @@ def __init__( - `circle_radius`: The radius of the contour used to compute the coefficients of the exponential time differencing Runge Kutta method. """ - if len(coefficients_nonlinear) != 3: + if len(nonlinear_coefficients) != 3: raise ValueError( "The nonlinear coefficients list must have exactly 3 elements" ) - self.coefficients_linear = coefficients_linear - self.coefficients_nonlinear = coefficients_nonlinear + self.linear_coefficients = linear_coefficients + self.nonlinear_coefficients = nonlinear_coefficients self.dealiasing_fraction = dealiasing_fraction super().__init__( @@ -136,7 +136,7 @@ def _build_linear_operator( axis=0, keepdims=True, ) - for i, c in enumerate(self.coefficients_linear) + for i, c in enumerate(self.linear_coefficients) ) return linear_operator @@ -149,22 +149,22 @@ def _build_nonlinear_fun( self.num_points, derivative_operator=derivative_operator, dealiasing_fraction=self.dealiasing_fraction, - scale_list=self.coefficients_nonlinear, + scale_list=self.nonlinear_coefficients, zero_mode_fix=True, # ToDo: check this ) class NormalizedNonlinearStepper(GeneralNonlinearStepper): - normalized_coefficients_linear: tuple[float, ...] - normalized_coefficients_nonlinear: tuple[float, float, float] + normalized_linear_coefficients: tuple[float, ...] + normalized_nonlinear_coefficients: tuple[float, float, float] def __init__( self, num_spatial_dims: int, num_points: int, *, - normalized_coefficients_linear: tuple[float, ...] = (0.0, 0.0, 0.1 * 0.1), - normalized_coefficients_nonlinear: tuple[float, float, float] = ( + normalized_linear_coefficients: tuple[float, ...] = (0.0, 0.0, 0.1 * 0.1), + normalized_nonlinear_coefficients: tuple[float, float, float] = ( 0.0, -1.0 * 0.1, 0.0, @@ -227,13 +227,13 @@ def __init__( boundary point. In higher dimensions; the number of points in each dimension is the same. Hence, the total number of degrees of freedom is `Nᵈ`. - - `normalized_coefficients_linear`: The list of coefficients `αⱼ` + - `normalized_linear_coefficients`: The list of coefficients `αⱼ` corresponding to the linear derivatives. The length of this tuple represents the highest occuring derivative. The default value `(0.0, 0.0, 0.1 * 0.1)` together with the default - `normalized_coefficients_nonlinear` corresponds to the Burgers + `normalized_nonlinear_coefficients` corresponds to the Burgers equation (in single-channel mode). - - `normalized_coefficients_nonlinear`: The list of coefficients `β₀`, + - `normalized_nonlinear_coefficients`: The list of coefficients `β₀`, `β₁`, and `β₂` (in this order) corresponding to the quadratic, (single-channel) convection, and gradient norm nonlinearity, respectively. The default value `(0.0, -1.0 * 0.1, 0.0)` corresponds @@ -256,16 +256,16 @@ def __init__( coefficients of the exponential time differencing Runge Kutta method. """ - self.normalized_coefficients_linear = normalized_coefficients_linear - self.normalized_coefficients_nonlinear = normalized_coefficients_nonlinear + self.normalized_linear_coefficients = normalized_linear_coefficients + self.normalized_nonlinear_coefficients = normalized_nonlinear_coefficients super().__init__( num_spatial_dims=num_spatial_dims, domain_extent=1.0, # Derivative operator is just scaled with 2 * jnp.pi num_points=num_points, dt=1.0, - coefficients_linear=normalized_coefficients_linear, - coefficients_nonlinear=normalized_coefficients_nonlinear, + linear_coefficients=normalized_linear_coefficients, + nonlinear_coefficients=normalized_nonlinear_coefficients, order=order, dealiasing_fraction=dealiasing_fraction, num_circle_points=num_circle_points, @@ -394,8 +394,8 @@ def __init__( super().__init__( num_spatial_dims=num_spatial_dims, num_points=num_points, - normalized_coefficients_linear=normalized_coefficients_linear, - normalized_coefficients_nonlinear=normalized_coefficients_nonlinear, + normalized_linear_coefficients=normalized_coefficients_linear, + normalized_nonlinear_coefficients=normalized_coefficients_nonlinear, order=order, dealiasing_fraction=dealiasing_fraction, num_circle_points=num_circle_points, diff --git a/exponax/stepper/generic/_polynomial.py b/exponax/stepper/generic/_polynomial.py index 2780569..4523536 100644 --- a/exponax/stepper/generic/_polynomial.py +++ b/exponax/stepper/generic/_polynomial.py @@ -7,8 +7,8 @@ class GeneralPolynomialStepper(BaseStepper): - coefficients: tuple[float, ...] - polynomial_scales: tuple[float, ...] + linear_coefficients: tuple[float, ...] + polynomial_coefficients: tuple[float, ...] dealiasing_fraction: float def __init__( @@ -18,8 +18,8 @@ def __init__( num_points: int, dt: float, *, - coefficients: tuple[float, ...] = (10.0, 0.0, 1.0), - polynomial_scales: tuple[float, ...] = (0.0, 0.0, -10.0), + linear_coefficients: tuple[float, ...] = (10.0, 0.0, 1.0), + polynomial_coefficients: tuple[float, ...] = (0.0, 0.0, -10.0), order=2, dealiasing_fraction: float = 2 / 3, num_circle_points: int = 16, @@ -78,15 +78,15 @@ def __init__( in each dimension is the same. Hence, the total number of degrees of freedom is `Nᵈ`. - `dt`: The timestep size `Δt` between two consecutive states. - - `coefficients`: The list of coefficients `a_j` corresponding to the + - `linear_coefficients`: The list of coefficients `a_j` corresponding to the derivatives. The length of this tuple represents the highest occuring derivative. The default value `(10.0, 0.0, 0.01)` in - combination with the default `polynomial_scales` corresponds to the + combination with the default `polynomial_coefficients` corresponds to the Fisher-KPP equation. - - `polynomial_scales`: The list of scales `pₖ` corresponding to the + - `polynomial_coefficients`: The list of scales `pₖ` corresponding to the polynomial contributions. The length of this tuple represents the highest occuring polynomial. The default value `(0.0, 0.0, 10.0)` in - combination with the default `coefficients` corresponds to the + combination with the default `linear_coefficients` corresponds to the Fisher-KPP equation. - `order`: The order of the Exponential Time Differencing Runge Kutta method. Must be one of {0, 1, 2, 3, 4}. The option `0` only @@ -105,8 +105,8 @@ def __init__( coefficients of the exponential time differencing Runge Kutta method. """ - self.coefficients = coefficients - self.polynomial_scales = polynomial_scales + self.linear_coefficients = linear_coefficients + self.polynomial_coefficients = polynomial_coefficients self.dealiasing_fraction = dealiasing_fraction super().__init__( @@ -130,7 +130,7 @@ def _build_linear_operator( axis=0, keepdims=True, ) - for i, c in enumerate(self.coefficients) + for i, c in enumerate(self.linear_coefficients) ) return linear_operator @@ -142,25 +142,25 @@ def _build_nonlinear_fun( self.num_spatial_dims, self.num_points, dealiasing_fraction=self.dealiasing_fraction, - coefficients=self.polynomial_scales, + coefficients=self.polynomial_coefficients, ) class NormalizedPolynomialStepper(GeneralPolynomialStepper): - normalized_coefficients: tuple[float, ...] - normalized_polynomial_scales: tuple[float, ...] + normalized_linear_coefficients: tuple[float, ...] + normalized_polynomial_coefficients: tuple[float, ...] def __init__( self, num_spatial_dims: int, num_points: int, *, - normalized_coefficients: tuple[float, ...] = ( + normalized_linear_coefficients: tuple[float, ...] = ( 10.0 * 0.001 / (10.0**0), 0.0, 1.0 * 0.001 / (10.0**2), ), - normalized_polynomial_scales: tuple[float, ...] = ( + normalized_polynomial_coefficients: tuple[float, ...] = ( 0.0, 0.0, -10.0 * 0.001, @@ -190,19 +190,19 @@ def __init__( boundary point. In higher dimensions; the number of points in each dimension is the same. Hence, the total number of degrees of freedom is `Nᵈ`. - - `normalized_coefficients`: The list of coefficients `α_j` corresponding - to the derivatives. The length of this tuple represents the highest - occuring derivative. The default value corresponds to the Fisher-KPP - equation. - - `normalized_polynomial_scales`: The list of scales `βₖ` corresponding - to the polynomial contributions. The length of this tuple represents - the highest occuring polynomial. The default value corresponds to the - Fisher-KPP equation. + - `normalized_linear_coefficients`: The list of coefficients `α_j` + corresponding to the derivatives. The length of this tuple + represents the highest occuring derivative. The default value + corresponds to the Fisher-KPP equation. + - `normalized_polynomial_coefficients`: The list of scales `βₖ` + corresponding to the polynomial contributions. The length of this + tuple represents the highest occuring polynomial. The default value + corresponds to the Fisher-KPP equation. - `order`: The order of the Exponential Time Differencing Runge Kutta method. Must be one of {0, 1, 2, 3, 4}. The option `0` only solves - the linear part of the equation. Use higher values for higher accuracy - and stability. The default choice of `2` is a good compromise for - single precision floats. + the linear part of the equation. Use higher values for higher + accuracy and stability. The default choice of `2` is a good + compromise for single precision floats. - `dealiasing_fraction`: The fraction of the wavenumbers to keep before evaluating the nonlinearity. The default 2/3 corresponds to Orszag's 2/3 rule which is sufficient if the highest occuring polynomial is @@ -212,18 +212,19 @@ def __init__( integral method to compute the coefficients of the exponential time differencing Runge Kutta method. - `circle_radius`: The radius of the contour used to compute the - coefficients of the exponential time differencing Runge Kutta method. + coefficients of the exponential time differencing Runge Kutta + method. """ - self.normalized_coefficients = normalized_coefficients - self.normalized_polynomial_scales = normalized_polynomial_scales + self.normalized_linear_coefficients = normalized_linear_coefficients + self.normalized_polynomial_coefficients = normalized_polynomial_coefficients super().__init__( num_spatial_dims=num_spatial_dims, domain_extent=1.0, # Derivative operator is just scaled with 2 * jnp.pi num_points=num_points, dt=1.0, - coefficients=normalized_coefficients, - polynomial_scales=normalized_polynomial_scales, + linear_coefficients=normalized_linear_coefficients, + polynomial_coefficients=normalized_polynomial_coefficients, order=order, dealiasing_fraction=dealiasing_fraction, num_circle_points=num_circle_points, @@ -328,8 +329,8 @@ def __init__( super().__init__( num_spatial_dims=num_spatial_dims, num_points=num_points, - normalized_coefficients=normalized_coefficients, - normalized_polynomial_scales=normalized_polynomial_scales, + normalized_linear_coefficients=normalized_coefficients, + normalized_polynomial_coefficients=normalized_polynomial_scales, order=order, dealiasing_fraction=dealiasing_fraction, num_circle_points=num_circle_points, diff --git a/exponax/stepper/generic/_vorticity_convection.py b/exponax/stepper/generic/_vorticity_convection.py index f75b2c4..d4d83c3 100644 --- a/exponax/stepper/generic/_vorticity_convection.py +++ b/exponax/stepper/generic/_vorticity_convection.py @@ -7,7 +7,7 @@ class GeneralVorticityConvectionStepper(BaseStepper): vorticity_convection_scale: float - coefficients: tuple[float, ...] + linear_coefficients: tuple[float, ...] injection_mode: int injection_scale: float dealiasing_fraction: float @@ -20,7 +20,7 @@ def __init__( dt: float, *, vorticity_convection_scale: float = 1.0, - coefficients: tuple[float, ...] = (0.0, 0.0, 0.001), + linear_coefficients: tuple[float, ...] = (0.0, 0.0, 0.001), injection_mode: int = 4, injection_scale: float = 0.0, order: int = 2, @@ -61,7 +61,7 @@ def __init__( in each dimension is the same. Hence, the total number of degrees of freedom is `Nᵈ`. - `dt`: The timestep size `Δt` between two consecutive states. - - `coefficients`: The list of coefficients `a_j` + - `linear_coefficients`: The list of coefficients `a_j` corresponding to the derivatives. The length of this tuple represents the highest occuring derivative. The default value `(0.0, 0.0, 0.001)` corresponds to pure regular diffusion. @@ -89,7 +89,7 @@ def __init__( if num_spatial_dims != 2: raise ValueError(f"Expected num_spatial_dims = 2, got {num_spatial_dims}.") self.vorticity_convection_scale = vorticity_convection_scale - self.coefficients = coefficients + self.linear_coefficients = linear_coefficients self.injection_mode = injection_mode self.injection_scale = injection_scale self.dealiasing_fraction = dealiasing_fraction @@ -114,7 +114,7 @@ def _build_linear_operator( axis=0, keepdims=True, ) - for i, c in enumerate(self.coefficients) + for i, c in enumerate(self.linear_coefficients) ) return linear_operator diff --git a/tests/test_builtin_solvers.py b/tests/test_builtin_solvers.py index 1c1acd4..9960920 100644 --- a/tests/test_builtin_solvers.py +++ b/tests/test_builtin_solvers.py @@ -107,7 +107,7 @@ def test_specific_stepper_to_general_linear_stepper( domain_extent, num_points, dt, - coefficients=general_stepper_coefficients, + linear_coefficients=general_stepper_coefficients, ) specific_pred = specific_stepper(u_0) @@ -204,7 +204,7 @@ def test_specific_stepper_to_general_convection_stepper( domain_extent, num_points, dt, - coefficients=general_stepper_coefficients, + linear_coefficients=general_stepper_coefficients, convection_scale=general_stepper_scale, conservative=conservative, ) @@ -282,7 +282,7 @@ def test_specific_to_general_gradient_norm_stepper( domain_extent, num_points, dt, - coefficients=general_stepper_coefficients, + linear_coefficients=general_stepper_coefficients, gradient_norm_scale=general_stepper_scale, ) @@ -321,12 +321,12 @@ def test_linear_normalized_stepper(coefficients): domain_extent, num_points, dt, - coefficients=coefficients, + linear_coefficients=coefficients, ) normalized_linear_stepper = ex.stepper.generic.NormalizedLinearStepper( num_spatial_dims, num_points, - normalized_coefficients=ex.stepper.generic.normalize_coefficients( + normalized_linear_coefficients=ex.stepper.generic.normalize_coefficients( coefficients, domain_extent=domain_extent, dt=dt, @@ -361,7 +361,7 @@ def test_nonlinear_normalized_stepper(): normalized_burgers_stepper = ex.stepper.generic.NormalizedConvectionStepper( num_spatial_dims, num_points, - normalized_coefficients=ex.stepper.generic.normalize_coefficients( + normalized_linear_coefficients=ex.stepper.generic.normalize_coefficients( [0.0, 0.0, diffusivity], domain_extent=domain_extent, dt=dt, diff --git a/validation/qualitative_rollouts.py b/validation/qualitative_rollouts.py index 3e89dd5..8460548 100644 --- a/validation/qualitative_rollouts.py +++ b/validation/qualitative_rollouts.py @@ -66,7 +66,7 @@ 3.0, 110, 0.01, - coefficients=[0.0, 0.0, 0.1, 0.0001], + linear_coefficients=[0.0, 0.0, 0.1, 0.0001], ), "dispersion_diffusion", ex.ic.RandomTruncatedFourierSeries(1, cutoff=5), @@ -80,7 +80,7 @@ 3.0, 110, 0.01, - coefficients=[0.0, 0.0, 0.0, 0.0001, -0.001], + linear_coefficients=[0.0, 0.0, 0.0, 0.0001, -0.001], ), "dispersion_hyper_diffusion", ex.ic.RandomTruncatedFourierSeries(1, cutoff=5),