forked from fishial/fish-identification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathauto_train_triplet.py
108 lines (86 loc) · 4.18 KB
/
auto_train_triplet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import sys
#Change path specificly to your directories
sys.path.insert(1, '/home/codahead/Fishial/FishialReaserch')
import torch
import logging
import torchvision.models as models
from apex import amp
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from PIL import Image
from torchvision import transforms
from module.classification_package.src.utils import WarmupCosineSchedule
from module.classification_package.src.model import EmbeddingModel, Backbone
from module.classification_package.src.dataset import FishialDataset
from module.classification_package.src.dataset import BalancedBatchSampler
from module.classification_package.src.utils import find_device
from module.classification_package.src.loss_functions import TripletLoss, QuadrupletLoss
from module.classification_package.src.utils import NewPad
from module.classification_package.src.train import train
from module.pytorch_metric_learning import losses
# Setup logging
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
def init_model(ckp=None):
resnet18 = models.resnet18(pretrained=True)
resnet18.fc = nn.Identity()
backbone = Backbone(resnet18)
embedding_model = EmbeddingModel(backbone)
if ckp:
embedding_model.load_state_dict(torch.load(ckp))
return embedding_model
def main():
ds_train = FishialDataset(
json_path="../dataset/data_train.json",
root_folder="../dataset",
transform=transforms.Compose([transforms.Resize((224, 224), Image.BILINEAR),
transforms.TrivialAugmentWide(),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.ToTensor(),
transforms.RandomErasing(p=0.358, scale=(0.05, 0.4), ratio=(0.05, 6.1), value=0, inplace=False),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
)
ds_val = FishialDataset(
json_path="../dataset/data_test.json",
root_folder="../dataset",
transform=transforms.Compose([
# NewPad(),
transforms.Resize([224, 224]),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
)
device = find_device()
writer = SummaryWriter('output/fashion_mnist_experiment_1')
n_classes_per_batch = 12
n_samples_per_class = 8
balanced_batch_sampler_ds_train = BalancedBatchSampler(ds_train, n_classes_per_batch, n_samples_per_class)
adaptive_margins = [True]
learning_rates = [3e-2]
momentums = [0.9]
steps = 50000
# batch_sizes = [32, 64, 128]
# Tune hyperparams with val set.
for adaptive_margin in adaptive_margins:
for learning_rate in learning_rates:
for momentum in momentums:
data_loader_train = DataLoader(ds_train, batch_sampler=balanced_batch_sampler_ds_train,
num_workers=2,
pin_memory=True) # Construct your Dataloader here
model = init_model('output/ckpt_triplet_cross_entropy_0.845_50800.0.ckpt')
model.to(device)
loss_fn = QuadrupletLoss()
opt = torch.optim.SGD(model.parameters(),
lr=learning_rate,
momentum=momentum,
weight_decay=0)
scheduler = WarmupCosineSchedule(opt, warmup_steps=500, t_total=steps)
model, opt = amp.initialize(models=model, optimizers=opt, opt_level='O2')
amp._amp_state.loss_scalers[0]._loss_scale = 2**20
# Convenient methods in order of verbosity from highest to lowest
train(scheduler, steps, opt, model, data_loader_train, ds_val, device, writer, ['at_k'], loss_fn, logging)
if __name__ == '__main__':
main()