-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathcmlPtreeConversionScript.sml
1490 lines (1409 loc) · 44.5 KB
/
cmlPtreeConversionScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
Specification of how to convert parse trees to abstract syntax.
*)
open preamble gramTheory tokenUtilsTheory astTheory
val _ = new_theory "cmlPtreeConversion"
val _ = set_grammar_ancestry ["gram", "tokenUtils", "ast", "namespace"]
val _ = patternMatchesLib.ENABLE_PMATCH_CASES();
(* handling constructor arities gets very complicated when "open" is
implemented *)
Datatype:
PCstate0 = <| fixities : string |-> num option ;
ctr_arities : (string, string) id |-> num |>
End
(* recording a fixity of NONE is what you have to do to represent an
explicit nonfix declaration *)
Type M = ``:PCstate0 list -> ('a # PCstate0 list) option``
Definition empty_PCstate0_def:
empty_PCstate0 = <| fixities := FEMPTY ; ctr_arities := FEMPTY |>
End
Definition mpushPC_scope_def:
mpushPC_scope : unit M = λpcs. SOME ((), empty_PCstate0 :: pcs)
End
Definition fixity_lookup_def:
fixity_lookup nm pcs =
dtcase pcs of
[] => NONE
| pc0 :: rest =>
dtcase FLOOKUP pc0.fixities nm of
NONE => fixity_lookup nm rest
| SOME NONE => NONE
| SOME r => r
End
(* mfixity_lookup : string -> num M
'fails' if the string has no fixity, even though it is perfectly
reasonable for a string to be nonfix.
*)
Definition mfixity_lookup_def:
mfixity_lookup nm : num M =
λpcs. OPTION_MAP (λr. (r, pcs)) (fixity_lookup nm pcs)
End
Definition mFUPD_HD_def:
mFUPD_HD f pcs =
dtcase pcs of
[] => NONE
| h :: t => SOME((), f h :: t)
End
(* msetfix : string -> num option -> unit M *)
Definition msetfix_def:
msetfix nm fix : unit M =
mFUPD_HD (λs0. s0 with fixities updated_by (λfm. fm |+ (nm, fix)))
End
(* mpop_anonscope : unit M *)
Definition mpop_anonscope_def:
mpopscope : unit M = λpcs.
dtcase pcs of
[] => NONE
| _ :: t => SOME((), t)
End
Definition mpop_namedscope_def:
mpop_namedscope (s : string) : unit M = λpcs.
dtcase pcs of
[] => NONE
| [_] => NONE
| curr :: next :: rest => SOME((), next :: rest)
End
(* needs to be adjusted so that constructors (only) declared in the current
scope get recorded in the next level up with the given name as a prefix.
Does nothing different at this stage, when I expect just to be handling
fixities (which are handled in a non-exportable way).
*)
(* ----------------------------------------------------------------------
We'll be using the option monad quite a bit in what follows
---------------------------------------------------------------------- *)
val _ = option_monadsyntax.temp_add_option_monadsyntax();
Overload lift[local] = ``option$OPTION_MAP``
Definition ifM_def:
ifM bM tM eM =
do
b <- bM;
if b then tM else eM
od
End
Definition mk_binop_def:
mk_binop a_op a1 a2 =
if a_op = Short "::" then Con (SOME (Short "::")) [a1; a2]
else App Opapp [App Opapp [Var a_op; a1]; a2]
End
Overload "'"[local] = ``λf a. OPTION_BIND a f``;
Definition tokcheck_def:
tokcheck pt tok <=> (destTOK ' (destLf pt) = SOME tok)
End
Definition ptree_UQTyop_def:
ptree_UQTyop (Lf _) = NONE ∧
ptree_UQTyop (Nd nt args) =
if FST nt <> mkNT nUQTyOp then NONE
else
dtcase args of
[pt] =>
do
lf <- destLf pt;
tk <- destTOK lf;
destSymbolT tk ++ destAlphaT tk
od
| _ => NONE
End
Definition ptree_TyvarN_def:
ptree_TyvarN (Lf _) = NONE ∧
ptree_TyvarN (Nd nt args) =
if FST nt <> mkNT nTyvarN then NONE
else
dtcase args of
[tyv] => destTyvarPT tyv
| _ => NONE
End
Definition ptree_Tyop_def:
ptree_Tyop (Lf _) = NONE ∧
ptree_Tyop (Nd nt args) =
if FST nt <> mkNT nTyOp then NONE
else
dtcase args of
[pt] =>
do
(str,s) <- destLongidT ' (destTOK ' (destLf pt));
SOME(Long str (Short s))
od ++
do
nm <- ptree_UQTyop pt;
SOME(Short nm)
od
| _ => NONE
End
Definition tokcheckl_def:
tokcheckl pts toks <=>
dtcase (pts,toks) of
([],[]) => T
| (pt::prest, tok::tokrest) => tokcheck pt tok ∧ tokcheckl prest tokrest
| _ => F
End
Definition ptree_linfix_def:
ptree_linfix topnt opn elnt (pt : mlptree) =
dtcase pt of
Lf _ => NONE
| Nd nt args =>
if FST nt = mkNT topnt then
dtcase args of
[pt] => do e <- elnt pt; SOME [e] od
| [x; op_pt; pt] => do
assert(tokcheck op_pt opn);
front <- ptree_linfix topnt opn elnt x;
last <- elnt pt;
SOME(front ++ [last])
od
| _ => NONE
else NONE
End
Definition tuplify_def:
tuplify [] = NONE ∧
tuplify [ty] = SOME ty ∧
tuplify tys = SOME(Attup tys)
End
Definition ptree_Type_def:
(ptree_Type nt (Lf _) : ast_t option = NONE) ∧
(ptree_Type nm (Nd nt args) =
if FST nt <> mkNT nm then NONE
else if nm = nType then
dtcase args of
[dt] =>
do
tys <- ptree_PType dt;
tuplify tys
od
| [dt;arrowt;rt] =>
do
assert(tokcheck arrowt ArrowT);
dtys <- ptree_PType dt;
dty <- tuplify dtys;
rty <- ptree_Type nType rt;
SOME(Atfun dty rty)
od
| _ => NONE
else if nm = nDType then
dtcase args of
[pt] => ptree_Type nTbase pt
| [dt; opn] => do
dty <- ptree_Type nDType dt;
opname <- ptree_Tyop opn;
SOME(Atapp [dty] opname)
od
| _ => NONE
else if nm = nTbase then
dtcase args of
[pt] =>
OPTION_MAP Atvar (destTyvarPT pt) ++
OPTION_MAP (Atapp []) (ptree_Tyop pt)
| [lpart; t; rpart] =>
do
assert(tokcheck lpart LparT ∧ tokcheck rpart RparT);
ptree_Type nType t
od
| [lpart; tl; rpart; opn] =>
do
assert(tokcheck lpart LparT ∧ tokcheck rpart RparT);
tylist <- ptree_Typelist2 tl;
opname <- ptree_Tyop opn;
SOME(Atapp tylist opname)
od
| _ => NONE
else NONE) ∧
(ptree_Typelist2 ptree : ast_t list option =
dtcase ptree of
Lf _ => NONE
| Nd nt args =>
if FST nt <> mkNT nTypeList2 then NONE
else
dtcase args of
| [dt; commat; tl'] =>
do
assert(tokcheck commat CommaT);
ty <- ptree_Type nType dt;
tylist <- ptree_TypeList1 tl';
SOME(ty::tylist)
od
| _ => NONE) ∧
(ptree_TypeList1 ptree : ast_t list option =
dtcase ptree of
Lf _ => NONE
| Nd nt args =>
if FST nt <> mkNT nTypeList1 then NONE
else
dtcase args of
[dt] =>
do
ty <- ptree_Type nType dt;
SOME([ty])
od
| [dt; commat; tl] =>
do
assert(tokcheck commat CommaT);
ty <- ptree_Type nType dt;
tl <- ptree_TypeList1 tl;
SOME(ty::tl)
od
| _ => NONE) ∧
(ptree_PType ptree : ast_t list option =
dtcase ptree of
Lf _ => NONE
| Nd nt args =>
if FST nt <> mkNT nPType then NONE
else
dtcase args of
[dty_pt] =>
do
dty <- ptree_Type nDType dty_pt;
SOME [dty]
od
| [dty_pt; st; pty_pt] =>
do
assert (tokcheck st StarT);
dty <- ptree_Type nDType dty_pt;
ptys <- ptree_PType pty_pt;
SOME(dty::ptys)
od
| _ => NONE)
End
Definition ptree_TypeName_def:
ptree_TypeName ptree : (tvarN list # typeN) option =
dtcase ptree of
Lf _ => NONE
| Nd nt args =>
if FST nt = mkNT nTypeName then
dtcase args of
[opt] => do opn <- ptree_UQTyop opt ; SOME([], opn) od
| [sym; opt] => do tyvn <- destTyvarPT sym ;
opn <- ptree_UQTyop opt ;
return ([tyvn], opn)
od
| [lp; tyvl; rp; opt] =>
do
assert (tokcheck lp LparT ∧ tokcheck rp RparT);
tyvnms <- ptree_linfix nTyVarList CommaT ptree_TyvarN tyvl;
opn <- ptree_UQTyop opt;
return(tyvnms, opn)
od
| _ => NONE
else NONE
End
Definition ptree_UQConstructorName_def:
ptree_UQConstructorName (Lf _) = NONE ∧
ptree_UQConstructorName (Nd nm args) =
if FST nm <> mkNT nUQConstructorName then NONE
else
dtcase args of
[pt] => destAlphaT ' (destTOK ' (destLf pt))
| _ => NONE
End
Definition ptree_ConstructorName_def:
ptree_ConstructorName ast =
dtcase ast of
Lf _ => NONE
| Nd nt args =>
if FST nt <> mkNT nConstructorName then NONE
else
dtcase args of
[pt] =>
do
s <- ptree_UQConstructorName pt;
SOME (Short s)
od ++
do
(str,s) <- destLongidT ' (destTOK ' (destLf pt));
SOME (Long str (Short s))
od
| _ => NONE
End
Definition detuplify_def:
detuplify (Attup args) = args ∧
detuplify ty = [ty]
End
Theorem detuplify_pmatch:
∀ty.
detuplify ty =
case ty of
Attup args => args
| ty => [ty]
Proof
ho_match_mp_tac (theorem "detuplify_ind")
>> fs[detuplify_def]
QED
Definition ptree_PTbase_def:
ptree_PTbase ast =
dtcase ast of
Lf _ => fail
| Nd nt args =>
if FST nt = mkNT nPTbase then
dtcase args of
[pt] =>
OPTION_MAP Atvar (destTyvarPT pt) ++
OPTION_MAP (Atapp []) (ptree_Tyop pt)
| [lpart; t; rpart] =>
do
assert(tokcheck lpart LparT ∧ tokcheck rpart RparT);
ptree_Type nType t
od
| _ => fail
else fail
End
Definition ptree_TbaseList_def:
ptree_TbaseList ast =
dtcase ast of
Lf _ => fail
| Nd nt args =>
if FST nt = mkNT nTbaseList then
dtcase args of
[] => return []
| [ptb_pt;rest_pt] => do
b <- ptree_PTbase ptb_pt ;
rest <- ptree_TbaseList rest_pt ;
return (b::rest)
od
| _ => fail
else fail
End
Definition ptree_Dconstructor_def:
ptree_Dconstructor ast =
dtcase ast of
Lf x => NONE
| Nd nt args =>
if FST nt = mkNT nDconstructor then
dtcase args of
[] => NONE
| t::ts =>
do
cname <- ptree_UQConstructorName t;
types <- dtcase ts of
[blist] =>
do
args <- ptree_TbaseList blist ;
return args
od
| _ => NONE;
SOME(cname, types)
od
else NONE
End
Definition ptree_DtypeDecl_def:
ptree_DtypeDecl (pt : mlptree) =
dtcase pt of
Lf _ => NONE
| Nd nt args =>
if FST nt = mkNT nDtypeDecl then
dtcase args of
[tynm_pt; eqt; dtc_pt] => do
assert(tokcheck eqt EqualsT);
tynm <- ptree_TypeName tynm_pt;
dtc <- ptree_linfix nDtypeCons BarT ptree_Dconstructor dtc_pt;
SOME(FST tynm,SND tynm,dtc)
od
| _ => NONE
else NONE
End
Definition ptree_TypeDec_def:
ptree_TypeDec ptree : type_def option =
dtcase ptree of
Lf _ => NONE
| Nd nt args =>
if FST nt = mkNT nTypeDec then
dtcase args of
[datatype_pt; pt] => do
assert(tokcheck datatype_pt DatatypeT);
ptree_linfix nDtypeDecls AndT ptree_DtypeDecl pt
od
| _ => NONE
else NONE
End
Definition ptree_TypeAbbrevDec_def:
ptree_TypeAbbrevDec ptree : dec option =
dtcase ptree of
Lf _ => NONE
| Nd nt args =>
if FST nt = mkNT nTypeAbbrevDec then
dtcase args of
[typetok; tynm ; eqtok ; typ_pt] => do
assert(tokcheck typetok TypeT ∧ tokcheck eqtok EqualsT) ;
(vars, nm) <- ptree_TypeName tynm;
typ <- ptree_Type nType typ_pt;
SOME(Dtabbrev (SND nt) vars nm typ)
od
| _ => NONE
else NONE
End
Definition singleSymP_def:
singleSymP P [pt] = do s <- destSymbolT ' (destTOK ' (destLf pt)) ;
assert (P s);
return (Short s)
od ∧
singleSymP _ _ = NONE
End
Definition ptree_Op_def:
ptree_Op (Lf _) = NONE ∧
ptree_Op (Nd nt subs) =
if FST nt = mkNT nMultOps then
if tokcheckl subs [StarT] then SOME (Short "*")
else if tokcheckl subs [AlphaT "mod"] then SOME (Short "mod")
else if tokcheckl subs [AlphaT "div"] then SOME (Short "div")
else singleSymP validMultSym subs
else if FST nt = mkNT nAddOps then singleSymP validAddSym subs
else if FST nt = mkNT nListOps then singleSymP validListSym subs
else if FST nt = mkNT nRelOps then
singleSymP validRelSym subs ++
do assert(tokcheckl subs [EqualsT]); return(Short "=") od
else if FST nt = mkNT nCompOps then
if tokcheckl subs [SymbolT ":="] then SOME (Short ":=")
else if tokcheckl subs [AlphaT "o"] then SOME (Short "o")
else NONE
else NONE
End
Definition ptree_V_def:
ptree_V (Lf _) = NONE ∧
ptree_V (Nd nt subs) =
do
assert (FST nt = mkNT nV) ;
dtcase subs of
[pt] => do t <- destTOK ' (destLf pt) ;
destAlphaT t ++ destSymbolT t
od
| _ => NONE
od
End
Definition ptree_FQV_def:
ptree_FQV (Lf _) = NONE ∧
ptree_FQV (Nd nt args) =
if FST nt <> mkNT nFQV then NONE
else
dtcase args of
[pt] => OPTION_MAP Short (ptree_V pt) ++
do
(str,s) <- destLongidT ' (destTOK ' (destLf pt));
SOME(Long str (Short s))
od
| _ => NONE
End
Definition isSymbolicConstructor_def:
isSymbolicConstructor (structopt : modN option) s =
return (s = "::")
End
Definition isConstructor_def:
isConstructor structopt s =
do
ifM (isSymbolicConstructor structopt s)
(return T)
(return (dtcase oHD s of NONE => F | SOME c => isAlpha c ∧ isUpper c))
od
End
(* third clause below will lead to a failure when the environment is
consulted to reveal that the long-id given does not correspond to a
constructor. We do this rather than fail to make the "totality" theorem
work *)
Definition EtoPat_def:
(EtoPat (Con x args) = if NULL args then SOME (Pcon x []) else NONE) ∧
(EtoPat (Var (Short n)) = SOME (Pvar n)) ∧
(EtoPat (Var (Long str n)) = SOME (Pcon (SOME (Long str n)) [])) ∧
(EtoPat _ = NONE)
End
Definition ptree_OpID_def:
ptree_OpID (Lf _) = NONE ∧
ptree_OpID (Nd nt subs) =
if FST nt ≠ mkNT nOpID then NONE
else
dtcase subs of
[Lf (TK tk, _)] =>
do
s <- destAlphaT tk ;
ifM (isConstructor NONE s)
(return (Con (SOME (Short s)) []))
(return (Var (Short s)))
od ++
do
s <- destSymbolT tk ;
ifM (isSymbolicConstructor NONE s)
(return (Con (SOME (Short s)) []))
(return (Var (Short s)))
od ++
do
(str,s) <- destLongidT tk ;
ifM (isConstructor (SOME str) s)
(return (Con (SOME (Long str (Short s))) []))
(return (Var (Long str (Short s))))
od ++
(if tk = StarT then
ifM (isSymbolicConstructor NONE "*")
(return (Con (SOME (Short "*")) []))
(return (Var (Short "*")))
else if tk = EqualsT then return (Var (Short "="))
else NONE)
| _ => NONE
End
Definition Papply_def:
Papply pat arg =
dtcase pat of
Pcon cn args => Pcon cn (args ++ [arg])
| _ => pat
End
val maybe_handleRef_def = PmatchHeuristics.with_classic_heuristic Define ‘
maybe_handleRef (Pcon (SOME (Short "Ref")) [pat]) = Pref pat ∧
maybe_handleRef p = p’
Definition ptree_Pattern_def[nocompute]:
(ptree_Pattern nt (Lf _) = NONE) ∧
(ptree_Pattern nt (Nd nm args) =
if mkNT nt <> FST nm then NONE
else if FST nm = mkNT nPbase then
dtcase args of
[vic] =>
ptree_Pattern nPtuple vic ++
do
cname <- ptree_ConstructorName vic;
SOME(Pcon (SOME cname) [])
od ++
do vname <- ptree_V vic; SOME(Pvar vname) od ++
do
lf <- destLf vic;
t <- destTOK lf;
(do i <- destIntT t ; return (Plit (IntLit i)) od ++
do s <- destStringT t ; return (Plit (StrLit s)) od ++
do c <- destCharT t ; return (Plit (Char c)) od)
od ++
do assert(tokcheck vic UnderbarT) ; return Pany od
| [lb; rb] =>
if tokcheckl args [LbrackT; RbrackT] then
SOME(Pcon (SOME (Short "[]")) [])
else if tokcheckl [lb] [OpT] then
do e <- ptree_OpID rb ; EtoPat e od
else NONE
| [lb; plistpt; rb] =>
do
assert (tokcheckl [lb;rb] [LbrackT; RbrackT]);
plist <- ptree_Plist plistpt;
SOME (FOLDR (λp a. Pcon (SOME (Short "::")) [p; a])
(Pcon (SOME (Short "[]")) [])
plist)
od
| _ => NONE
else if FST nm = mkNT nPConApp then
dtcase args of
[cn] =>
do
cname <- ptree_ConstructorName cn ;
return (Pcon (SOME cname) [])
od
| [capp_pt; base_pt] =>
do
capp <- ptree_Pattern nPConApp capp_pt ;
base <- ptree_Pattern nPbase base_pt ;
return (Papply capp base)
od
| _ => fail
else if FST nm = mkNT nPapp then
dtcase args of
[pb] => ptree_Pattern nPbase pb
| [capp_pt; ppt] =>
do
capp <- ptree_Pattern nPConApp capp_pt;
b <- ptree_Pattern nPbase ppt;
return (maybe_handleRef (Papply capp b))
od
| _ => NONE
else if FST nm = mkNT nPcons then
dtcase args of
[papt] => ptree_Pattern nPapp papt
| [papt; cons_t; pcons_pt] =>
do
assert (tokcheck cons_t (SymbolT "::"));
pa <- ptree_Pattern nPapp papt;
patt <- ptree_Pattern nPcons pcons_pt;
SOME(Pcon (SOME (Short "::")) [pa; patt])
od
| _ => NONE
else if FST nm = mkNT nPas then
dtcase args of
[papt] => ptree_Pattern nPcons papt
| [vt; as_t; papt] =>
do
assert (tokcheck as_t AsT);
pa <- ptree_Pattern nPcons papt;
vtt <- ptree_V vt;
SOME(Pas pa vtt)
od
| _ => fail
else if FST nm = mkNT nPattern then
dtcase args of
[pas] => ptree_Pattern nPas pas
| [pas_pt; colon_t; type_pt] =>
do
assert (tokcheck colon_t ColonT);
pc <- ptree_Pattern nPas pas_pt;
ty <- ptree_Type nType type_pt;
return (Ptannot pc ty)
od
| _ => fail
else if FST nm = mkNT nPtuple then
dtcase args of
[lp; rp] => do assert (tokcheckl [lp;rp] [LparT; RparT]);
return (Pcon NONE [])
od
| [lp; pl_pt; rp] =>
do
assert (tokcheckl [lp;rp] [LparT; RparT]);
pl <- ptree_Plist pl_pt;
dtcase pl of
[] => NONE
| [p] => SOME p
| _ => SOME (Pcon NONE pl)
od
| _ => NONE
else NONE) ∧
(ptree_Plist (Lf _) = NONE) ∧
(ptree_Plist (Nd nm args) =
if FST nm <> mkNT nPatternList then NONE
else
dtcase args of
[p_pt] =>
do
p <- ptree_Pattern nPattern p_pt;
SOME [p]
od
| [p; ct; pl] =>
do
assert (tokcheck ct CommaT);
hdpat <- ptree_Pattern nPattern p;
tlpats <- ptree_Plist pl;
SOME(hdpat::tlpats)
od
| _ => NONE)
End
Type ptree[local] = “:(token,MMLnonT,locs) parsetree”
fun partial_eval baseth c nodepat nt =
let val tlf = list_mk_icomb(c, [nt, “Lf l : ptree”])
val tnd = list_mk_icomb(c, [nt, nodepat])
val c = ONCE_REWRITE_CONV [baseth] THENC SCONV []
in
CONJ (c tlf) (c tnd)
end
Theorem ptree_Pattern_pevaled[compute] =
LIST_CONJ $
map (partial_eval ptree_Pattern_def “ptree_Pattern” “Nd nm args : ptree”)
[“nPattern”, “nPapp”, “nPcons”, “nPas”, “nPbase”, “nPConApp”, “nPtuple”]
Theorem ptree_Plist_thm[compute] =
LIST_CONJ $ List.take (List.rev $ CONJUNCTS ptree_Pattern_def, 2)
Definition ptree_PbaseList1_def:
(ptree_PbaseList1 (Lf _) = NONE) ∧
(ptree_PbaseList1 (Nd nm args) =
if FST nm <> mkNT nPbaseList1 then NONE
else
dtcase args of
[p_pt] => lift SINGL (ptree_Pattern nPbase p_pt)
| [p_pt; pl_pt] =>
lift2 CONS
(ptree_Pattern nPbase p_pt)
(ptree_PbaseList1 pl_pt)
| _ => NONE)
End
Definition Eseq_encode_def:
(Eseq_encode [] = NONE) ∧
(Eseq_encode [e] = SOME e) ∧
(Eseq_encode (e::es) =
do
body <- Eseq_encode es;
SOME(Let NONE e body)
od)
End
Definition dest_Conk_def:
(dest_Conk (Con x y) k v = k x y) /\
(dest_Conk _ k v = v)
End
Definition destFFIop_def[simp]:
(destFFIop (FFI s) = SOME s) ∧
(destFFIop _ = NONE)
End
Definition strip_loc_expr_def:
(strip_loc_expr (Lannot e l) =
dtcase (strip_loc_expr e) of
(e0, _) => (e0, SOME l)) ∧
(strip_loc_expr e = (e, NONE))
End
Definition merge_locsopt_def:
merge_locsopt (SOME l1) (SOME l2) = SOME (merge_locs l1 l2) ∧
merge_locsopt _ _ = NONE
End
Definition optLannot_def:
optLannot NONE e = e ∧
optLannot (SOME l) e = Lannot e l
End
Definition mkAst_App_def:
mkAst_App a1 a2 =
let (a10, loc1) = strip_loc_expr a1
in
dest_Conk a10
(λnm_opt args.
if nm_opt = SOME (Short "Ref") ∧ NULL args then App Opref [a2]
else
let (a2', loc2) = strip_loc_expr a2
in
optLannot (merge_locsopt loc1 loc2) (Con nm_opt (args ++ [a2'])))
(dtcase a10 of
App opn args =>
(dtcase (destFFIop opn) of
NONE => App Opapp [a1;a2]
| SOME s => App opn (args ++ [a2]))
| _ => App Opapp [a1;a2])
End
Definition dePat_def:
(dePat (Pvar v) b = (v, b)) ∧
(dePat p b = ("", Mat (Var (Short "")) [(p, b)]))
End
Definition mkFun_def:
mkFun p b = UNCURRY Fun (dePat p b)
End
Definition ptree_Eliteral_def:
ptree_Eliteral (Lf _) = NONE ∧
ptree_Eliteral (Nd nt subs) =
do
assert (LENGTH subs = 1 ∧ FST nt = mkNT nEliteral);
lf <- destLf (HD subs);
t <- destTOK lf;
(do i <- destIntT t ; return (Lit (IntLit i)) od ++
do c <- destCharT t ; return (Lit (Char c)) od ++
do s <- destStringT t ; return (Lit (StrLit s)) od ++
do n <- destWordT t ; return (Lit (Word64 (n2w n))) od ++
do s <- destFFIT t ; return (App (FFI s) []) od)
od
End
Definition bind_loc_def:
bind_loc (Lannot e l) l' = Lannot e l /\
bind_loc e l = Lannot e l
End
Definition letFromPat_def:
letFromPat p rhs body =
dtcase p of
Pany => Let NONE rhs body
| Pvar v => Let (SOME v) rhs body
| _ => Mat rhs [(p,body)]
End
Definition ptree_Expr_def[nocompute]:
ptree_Expr ent (Lf _) = NONE ∧
ptree_Expr ent (Nd (nt,loc) subs) =
do
e <- (if mkNT ent = nt then
if nt = mkNT nEbase then
dtcase subs of
[lpart; pt; rpart] =>
if tokcheck lpart LparT then
do
assert (tokcheck rpart RparT);
eseq <- ptree_Eseq pt;
Eseq_encode eseq
od
else
do
assert(tokcheckl [lpart;rpart][LbrackT; RbrackT]);
elist <- ptree_Exprlist nElist1 pt;
SOME(FOLDR (λe acc. Con (SOME (Short "::")) [e; acc])
(Con (SOME (Short "[]")) [])
elist)
od
| [single] =>
ptree_Eliteral single ++
do
s <- ptree_FQV single;
SOME (Var s)
od ++
do cname <- ptree_ConstructorName single;
SOME (Con (SOME cname) [])
od ++
ptree_Expr nEtuple single
| [lp;rp] => if tokcheckl [lp;rp][LparT;RparT] then
SOME (Con NONE [])
else if tokcheckl [lp;rp] [LbrackT; RbrackT] then
SOME (Con (SOME (Short "[]")) [])
else if tokcheck lp OpT then
ptree_OpID rp
else
NONE
| [lett;letdecs_pt;intok;ept;endt] =>
do
assert(tokcheckl [lett; intok; endt] [LetT; InT; EndT]);
letdecs <- ptree_LetDecs letdecs_pt;
eseq <- ptree_Eseq ept;
e <- Eseq_encode eseq;
SOME(FOLDR (λdf acc. dtcase df of
INL (p,e0) => letFromPat p e0 acc
| INR fds => Letrec fds acc)
e
letdecs)
od
| _ => NONE
else if nt = mkNT nEapp then
dtcase subs of
[t1; t2] => do
a1 <- ptree_Expr nEapp t1;
a2 <- ptree_Expr nEbase t2;
SOME(mkAst_App a1 a2)
od
| [t] => ptree_Expr nEbase t
| _ => NONE
else if nt = mkNT nEtuple then
dtcase subs of
[lpart; el2; rpart] =>
do
assert (tokcheckl [lpart; rpart] [LparT; RparT]);
es <- ptree_Exprlist nElist2 el2;
SOME(Con NONE es)
od
| _ => NONE
else if nt = mkNT nEmult then
dtcase subs of
[t1; opt; t2] => do (* s will be *, /, div, or mod *)
a1 <- ptree_Expr nEmult t1;
a_op <- ptree_Op opt;
a2 <- ptree_Expr nEapp t2;
return(mk_binop a_op a1 a2)
od
| [t] => ptree_Expr nEapp t
| _ => NONE
else if nt = mkNT nEadd then
dtcase subs of
[t1;opt;t2] => do
a1 <- ptree_Expr nEadd t1;
a_op <- ptree_Op opt;
a2 <- ptree_Expr nEmult t2;
return (mk_binop a_op a1 a2)
od
| [t] => ptree_Expr nEmult t
| _ => NONE
else if nt = mkNT nElistop then
dtcase subs of
[t1;opt;t2] => do
a1 <- ptree_Expr nEadd t1;
a_op <- ptree_Op opt;
a2 <- ptree_Expr nElistop t2;
return (mk_binop a_op a1 a2)
od
| [t] => ptree_Expr nEadd t
| _ => NONE
else if nt = mkNT nErel then
dtcase subs of
[t1;opt;t2] => do
a1 <- ptree_Expr nErel t1;
a_op <- ptree_Op opt;
a2 <- ptree_Expr nElistop t2;
return (mk_binop a_op a1 a2)
od
| [t] => ptree_Expr nElistop t
| _ => NONE
else if nt = mkNT nEcomp then
dtcase subs of
[t1;opt;t2] => do
a1 <- ptree_Expr nEcomp t1;
a_op <- ptree_Op opt;
a2 <- ptree_Expr nErel t2;
return (mk_binop a_op a1 a2)
od
| [t] => ptree_Expr nErel t
| _ => NONE
else if nt = mkNT nEbefore then
dtcase subs of
[t1;opt;t2] => do
assert(tokcheck opt (AlphaT "before"));
a1 <- ptree_Expr nEbefore t1;
a2 <- ptree_Expr nEcomp t2;
return (mk_binop (Short "before") a1 a2)
od
| [t] => ptree_Expr nEcomp t
| _ => NONE
else if nt = mkNT nEtyped then
dtcase subs of
[e_pt; colon; ty_pt] => do
assert(tokcheck colon ColonT);
e <- ptree_Expr nEbefore e_pt;
ty <- ptree_Type nType ty_pt;
return (Tannot e ty)
od
| [t] => ptree_Expr nEbefore t
| _ => NONE
else if nt = mkNT nElogicAND then
dtcase subs of
[t1;andt;t2] => do
assert(tokcheck andt AndalsoT);
a1 <- ptree_Expr nElogicAND t1;
a2 <- ptree_Expr nEtyped t2;
SOME(Log And a1 a2)
od
| [t] => ptree_Expr nEtyped t