-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathpanSemScript.sml
592 lines (539 loc) · 19.5 KB
/
panSemScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
(*
Semantics of panLang
*)
open preamble panLangTheory;
local open alignmentTheory
miscTheory (* for read_bytearray *)
wordLangTheory (* for word_op and word_sh *)
ffiTheory in end;
val _ = new_theory"panSem";
val _ = set_grammar_ancestry [
"panLang", "alignment",
"finite_map", "misc", "wordLang", "ffi", "lprefix_lub"]
Datatype:
word_lab = Word ('a word)
| Label funname
End
Datatype:
v = Val ('a word_lab)
| Struct (v list)
End
Overload ValWord = “\w. Val (Word w)”
Overload ValLabel = “\l. Val (Label l)”
Datatype:
state =
<| locals : varname |-> 'a v
; code : funname |-> ((varname # shape) list # ('a panLang$prog))
(* arguments (with shape), body *)
; eshapes : eid |-> shape
; memory : 'a word -> 'a word_lab
; memaddrs : ('a word) set
; sh_memaddrs : ('a word) set
; clock : num
; be : bool
; ffi : 'ffi ffi_state
; base_addr : 'a word
(* ; gaddrs : decname |-> ('a word) (* num? *) *)
(* TODISC: this maps decname to its starting address in the memory and relative size *)|>
End
val state_component_equality = theorem"state_component_equality";
Datatype:
result = Error
| TimeOut
| Break
| Continue
| Return ('a v)
| Exception mlstring ('a v)
| FinalFFI final_event
End
val s = ``(s:('a,'ffi) panSem$state)``
Theorem MEM_IMP_v_size:
!xs a. MEM a xs ==> (v_size l a < 1 + v1_size l xs)
Proof
Induct >> fs [] >>
rpt strip_tac >> rw [fetch "-" "v_size_def"] >>
res_tac >> decide_tac
QED
Definition shape_of_def:
shape_of (ValWord _) = One /\
shape_of (ValLabel _) = One /\
shape_of (Struct vs) = Comb (MAP shape_of vs)
Termination
wf_rel_tac `measure (\v. v_size ARB v)` >>
fs [MEM_IMP_v_size]
End
Definition mem_load_byte_def:
mem_load_byte m dm be w =
case m (byte_align w) of
| Label _ => NONE
| Word v =>
if byte_align w IN dm
then SOME (get_byte w v be) else NONE
End
Definition mem_load_def:
(mem_load sh addr dm (m: 'a word -> 'a word_lab) =
case sh of
| One =>
if addr IN dm
then SOME (Val (m addr))
else NONE
| Comb shapes =>
case mem_loads shapes addr dm m of
| SOME vs => SOME (Struct vs)
| NONE => NONE) /\
(mem_loads [] addr dm m = SOME []) /\
(mem_loads (shape::shapes) addr dm m =
case (mem_load shape addr dm m,
mem_loads shapes (addr + bytes_in_word * n2w (size_of_shape shape)) dm m) of
| SOME v, SOME vs => SOME (v :: vs)
| _ => NONE)
Termination
wf_rel_tac ‘measure (\x. case ISR x of
| T => list_size shape_size (FST (OUTR x))
| F => shape_size (FST (OUTL x)))’ >>
rw []
>- (
qid_spec_tac ‘shapes’ >>
Induct >> rw [] >> fs [list_size_def, shape_size_def]) >>
fs [list_size_def, shape_size_def] >>
fs [list_size_def, shape_size_def]
End
Definition pan_op_def:
pan_op Mul [w1:'a word;w2] = SOME(w1 * w2) ∧
pan_op _ _ = NONE
End
Definition eval_def:
(eval ^s (Const w) = SOME (ValWord w)) /\
(eval s (Var v) = FLOOKUP s.locals v) /\
(eval s (Label fname) =
case FLOOKUP s.code fname of
| SOME _ => SOME (ValLabel fname)
| _ => NONE) /\
(*
(eval s (GetAddr dname) =
OPTION_MAP ValWord (FLOOKUP s.gaddrs dname)) /\ *)
(eval s (Struct es) =
case (OPT_MMAP (eval s) es) of
| SOME vs => SOME (Struct vs)
| NONE => NONE) /\
(eval s (Field index e) =
case eval s e of
| SOME (Struct vs) =>
if index < LENGTH vs then SOME (EL index vs)
else NONE
| _ => NONE) /\
(eval s (Load shape addr) =
case eval s addr of
| SOME (ValWord w) => mem_load shape w s.memaddrs s.memory
| _ => NONE) /\
(eval s (LoadByte addr) =
case eval s addr of
| SOME (ValWord w) =>
(case mem_load_byte s.memory s.memaddrs s.be w of
| NONE => NONE
| SOME w => SOME (ValWord (w2w w)))
| _ => NONE) /\
(eval s (Op op es) =
case (OPT_MMAP (eval s) es) of
| SOME ws =>
if (EVERY (\w. case w of (ValWord _) => T | _ => F) ws)
then OPTION_MAP ValWord
(word_op op (MAP (\w. case w of ValWord n => n) ws)) else NONE
| _ => NONE) /\
(eval s (Panop op es) =
case (OPT_MMAP (eval s) es) of
| SOME ws =>
if (EVERY (\w. case w of (ValWord _) => T | _ => F) ws)
then OPTION_MAP ValWord
(pan_op op (MAP (\w. case w of ValWord n => n) ws)) else NONE
| _ => NONE) /\
(eval s (Cmp cmp e1 e2) =
case (eval s e1, eval s e2) of
| (SOME (ValWord w1), SOME (ValWord w2)) =>
SOME (ValWord (if word_cmp cmp w1 w2 then 1w else 0w))
| _ => NONE) /\
(eval s (Shift sh e n) =
case eval s e of
| SOME (ValWord w) => OPTION_MAP ValWord (word_sh sh w n)
| _ => NONE) /\
(eval s BaseAddr =
SOME (ValWord s.base_addr)) /\
(eval s BytesInWord =
SOME (ValWord bytes_in_word))
Termination
wf_rel_tac `measure (exp_size ARB o SND)`
\\ rpt strip_tac \\ imp_res_tac MEM_IMP_exp_size
\\ TRY (first_x_assum (assume_tac o Q.SPEC `ARB`))
\\ decide_tac
End
(* TODISC: why NONE is returned here on write failure *)
Definition mem_store_byte_def:
mem_store_byte m dm be w b =
case m (byte_align w) of
| Word v =>
if byte_align w IN dm
then SOME ((byte_align w =+ Word (set_byte w b v be)) m)
else NONE
| Label _ => NONE
End
Definition write_bytearray_def:
(write_bytearray a [] m dm be = m) /\
(write_bytearray a (b::bs) m dm be =
case mem_store_byte (write_bytearray (a+1w) bs m dm be) dm be a b of
| SOME m => m
| NONE => m)
End
(*
Definition write_bytearray_def:
(write_bytearray a [] m dm be = SOME m) /\
(write_bytearray a (b::bs) m dm be =
case mem_store_byte m dm be a b of
| SOME m => write_bytearray (a+1w) bs m dm be
| NONE => NONE)
End
*)
Definition mem_store_def:
mem_store (addr:'a word) (w:'a word_lab) dm m =
if addr IN dm then
SOME ((addr =+ w) m)
else NONE
End
Definition mem_stores_def:
(mem_stores a [] dm m = SOME m) /\
(mem_stores a (w::ws) dm m =
case mem_store a w dm m of
| SOME m' => mem_stores (a + bytes_in_word) ws dm m'
| NONE => NONE)
End
Definition flatten_def:
(flatten (Val w) = [w]) ∧
(flatten (Struct vs) = FLAT (MAP flatten vs))
Termination
wf_rel_tac `measure (\v. v_size ARB v)` >>
fs [MEM_IMP_v_size]
End
Definition set_var_def:
set_var v value ^s =
(s with locals := s.locals |+ (v,value))
End
Definition upd_locals_def:
upd_locals varargs ^s =
s with <| locals := FEMPTY |++ varargs |>
End
Definition empty_locals_def:
empty_locals ^s =
s with <| locals := FEMPTY |>
End
Definition dec_clock_def:
dec_clock ^s =
s with clock := s.clock - 1
End
Definition fix_clock_def:
fix_clock old_s (res, new_s) =
(res, new_s with <|clock := if old_s.clock < new_s.clock then old_s.clock else new_s.clock |>)
End
Theorem fix_clock_IMP_LESS_EQ:
!x. fix_clock ^s x = (res,s1) ==> s1.clock <= s.clock
Proof
full_simp_tac(srw_ss())[fix_clock_def,FORALL_PROD] >>
srw_tac[][] >> full_simp_tac(srw_ss())[] >> decide_tac
QED
Definition lookup_code_def:
lookup_code code fname args =
case (FLOOKUP code fname) of
| SOME (vshapes, prog) =>
if ALL_DISTINCT (MAP FST vshapes) ∧
LIST_REL (\vshape arg. SND vshape = shape_of arg) vshapes args
then SOME (prog, FEMPTY |++ ZIP (MAP FST vshapes,args))
else NONE
| _ => NONE
End
Definition is_valid_value_def:
is_valid_value locals v value =
case FLOOKUP locals v of
| SOME w => shape_of value = shape_of w
| NONE => F
End
Definition res_var_def:
(res_var lc (n, NONE) = lc \\ n) /\
(res_var lc (n, SOME v) = lc |+ (n,v))
End
Definition sh_mem_load_def:
sh_mem_load v (addr:'a word) nb ^s =
if nb = 0 then
(if addr IN s.sh_memaddrs then
(case call_FFI s.ffi (SharedMem MappedRead) [n2w nb] (word_to_bytes addr F) of
FFI_final outcome => (SOME (FinalFFI outcome), empty_locals s)
| FFI_return new_ffi new_bytes =>
(NONE, (set_var v (ValWord (word_of_bytes F 0w new_bytes)) s) with ffi := new_ffi))
else (SOME Error, s))
else
(if (byte_align addr) IN s.sh_memaddrs then
(case call_FFI s.ffi (SharedMem MappedRead) [n2w nb] (word_to_bytes addr F) of
FFI_final outcome => (SOME (FinalFFI outcome), empty_locals s)
| FFI_return new_ffi new_bytes =>
(NONE, (set_var v (ValWord (word_of_bytes F 0w new_bytes)) s) with ffi := new_ffi))
else (SOME Error, s))
End
Definition sh_mem_store_def:
sh_mem_store w (addr:'a word) nb ^s =
if nb = 0 then
(if addr IN s.sh_memaddrs then
(case call_FFI s.ffi (SharedMem MappedWrite) [n2w nb]
(word_to_bytes w F ++ word_to_bytes addr F) of
FFI_final outcome => (SOME (FinalFFI outcome), s)
| FFI_return new_ffi new_bytes =>
(NONE, s with ffi := new_ffi))
else (SOME Error, s))
else
(if (byte_align addr) IN s.sh_memaddrs then
(case call_FFI s.ffi (SharedMem MappedWrite) [n2w nb]
(TAKE nb (word_to_bytes w F)
++ word_to_bytes addr F) of
FFI_final outcome => (SOME (FinalFFI outcome), s)
| FFI_return new_ffi new_bytes =>
(NONE, s with ffi := new_ffi))
else (SOME Error, s))
End
Definition nb_op_def:
nb_op Op8 = 1:num ∧
nb_op OpW = 0 ∧
nb_op Op32 = 4
End
Definition evaluate_def:
(evaluate (Skip:'a panLang$prog,^s) = (NONE,s)) /\
(evaluate (Dec v e prog, s) =
case (eval s e) of
| SOME value =>
let (res,st) = evaluate (prog,s with locals := s.locals |+ (v,value)) in
(res, st with locals := res_var st.locals (v, FLOOKUP s.locals v))
| NONE => (SOME Error, s)) /\
(evaluate (Assign v src,s) =
case (eval s src) of
| SOME value =>
if is_valid_value s.locals v value
then (NONE, s with locals := s.locals |+ (v,value))
else (SOME Error, s)
| NONE => (SOME Error, s)) /\
(evaluate (Store dst src,s) =
case (eval s dst, eval s src) of
| (SOME (ValWord addr), SOME value) =>
(case mem_stores addr (flatten value) s.memaddrs s.memory of
| SOME m => (NONE, s with memory := m)
| NONE => (SOME Error, s))
| _ => (SOME Error, s)) /\
(evaluate (StoreByte dst src,s) =
case (eval s dst, eval s src) of
| (SOME (ValWord adr), SOME (ValWord w)) =>
(case mem_store_byte s.memory s.memaddrs s.be adr (w2w w) of
| SOME m => (NONE, s with memory := m)
| NONE => (SOME Error, s))
| _ => (SOME Error, s)) /\
(evaluate (ShMemLoad op v ad,s) =
case eval s ad of
| SOME (ValWord addr) =>
(case FLOOKUP s.locals v of
SOME (Val _) => sh_mem_load v addr (nb_op op) s
| _ => (SOME Error, s))
| _ => (SOME Error, s)) /\
(evaluate (ShMemStore op ad e,s) =
case (eval s ad,eval s e) of
| (SOME (ValWord addr), SOME (ValWord bytes)) => sh_mem_store bytes addr (nb_op op) s
| _ => (SOME Error, s)) /\
(evaluate (Seq c1 c2,s) =
let (res,s1) = fix_clock s (evaluate (c1,s)) in
if res = NONE then evaluate (c2,s1) else (res,s1)) /\
(evaluate (If e c1 c2,s) =
case (eval s e) of
| SOME (ValWord w) =>
evaluate (if w <> 0w then c1 else c2, s) (* False is 0, True is everything else *)
| _ => (SOME Error,s)) /\
(evaluate (Break,s) = (SOME Break,s)) /\
(evaluate (Continue,s) = (SOME Continue,s)) /\
(evaluate (While e c,s) =
case (eval s e) of
| SOME (ValWord w) =>
if (w <> 0w) then
(if s.clock = 0 then (SOME TimeOut,empty_locals s) else
let (res,s1) = fix_clock (dec_clock s) (evaluate (c,dec_clock s)) in
case res of
| SOME Continue => evaluate (While e c,s1)
| NONE => evaluate (While e c,s1)
| SOME Break => (NONE,s1)
| _ => (res,s1))
else (NONE,s)
| _ => (SOME Error,s)) /\
(evaluate (Return e,s) =
case (eval s e) of
| SOME value =>
if size_of_shape (shape_of value) <= 32
then (SOME (Return value),empty_locals s)
else (SOME Error,s)
| _ => (SOME Error,s)) /\
(evaluate (Raise eid e,s) =
case (FLOOKUP s.eshapes eid, eval s e) of
| (SOME sh, SOME value) =>
if shape_of value = sh ∧
size_of_shape (shape_of value) <= 32
then (SOME (Exception eid value),empty_locals s)
else (SOME Error,s)
| _ => (SOME Error,s)) /\
(evaluate (Tick,s) =
if s.clock = 0 then (SOME TimeOut,empty_locals s)
else (NONE,dec_clock s)) /\
(evaluate (Annot _ _,s) = (NONE, s)) /\
(evaluate (Call caltyp trgt argexps,s) =
case (eval s trgt, OPT_MMAP (eval s) argexps) of
| (SOME (ValLabel fname), SOME args) =>
(case lookup_code s.code fname args of
| SOME (prog, newlocals) => if s.clock = 0 then (SOME TimeOut,empty_locals s)
else
let eval_prog = fix_clock ((dec_clock s) with locals := newlocals)
(evaluate (prog, (dec_clock s) with locals:= newlocals)) in
(case eval_prog of
| (NONE,st) => (SOME Error,st)
| (SOME Break,st) => (SOME Error,st)
| (SOME Continue,st) => (SOME Error,st)
| (SOME (Return retv),st) =>
(case caltyp of
| NONE => (SOME (Return retv),empty_locals st)
| SOME (NONE, _) => (NONE, st with locals := s.locals)
| SOME (SOME rt, _) =>
if is_valid_value s.locals rt retv
then (NONE, set_var rt retv (st with locals := s.locals))
else (SOME Error,st))
| (SOME (Exception eid exn),st) =>
(case caltyp of
| NONE => (SOME (Exception eid exn),empty_locals st)
| SOME (_, NONE) => (SOME (Exception eid exn),empty_locals st)
| SOME (_, (SOME (eid', evar, p))) =>
if eid = eid' then
case FLOOKUP s.eshapes eid of
| SOME sh =>
if shape_of exn = sh ∧ is_valid_value s.locals evar exn then
evaluate (p, set_var evar exn (st with locals := s.locals))
else (SOME Error,st)
| NONE => (SOME Error,st)
else (SOME (Exception eid exn), empty_locals st))
| (res,st) => (res,empty_locals st))
| _ => (SOME Error,s))
| (_, _) => (SOME Error,s))/\
(evaluate (DecCall rt shape trgt argexps prog1,s) =
case (eval s trgt, OPT_MMAP (eval s) argexps) of
| (SOME (ValLabel fname), SOME args) =>
(case lookup_code s.code fname args of
| SOME (prog, newlocals) => if s.clock = 0 then (SOME TimeOut,empty_locals s)
else
let eval_prog = fix_clock ((dec_clock s) with locals := newlocals)
(evaluate (prog, (dec_clock s) with locals:= newlocals)) in
(case eval_prog of
| (NONE,st) => (SOME Error,st)
| (SOME Break,st) => (SOME Error,st)
| (SOME Continue,st) => (SOME Error,st)
| (SOME (Return retv),st) =>
if shape_of retv = shape then
let (res',st') = evaluate (prog1, set_var rt retv (st with locals := s.locals)) in
(res',st' with locals := res_var st'.locals (rt, FLOOKUP s.locals rt))
else
(SOME Error, st)
| (res,st) => (res,empty_locals st))
| _ => (SOME Error,s))
| (_, _) => (SOME Error,s)) /\
(evaluate (ExtCall ffi_index ptr1 len1 ptr2 len2,s) =
case (eval s ptr1, eval s len1, eval s ptr2, eval s len2) of
| SOME (ValWord sz1),SOME (ValWord ad1),SOME (ValWord sz2),SOME (ValWord ad2) =>
(case (read_bytearray sz1 (w2n ad1) (mem_load_byte s.memory s.memaddrs s.be),
read_bytearray sz2 (w2n ad2) (mem_load_byte s.memory s.memaddrs s.be)) of
| SOME bytes,SOME bytes2 =>
(case call_FFI s.ffi (ExtCall (explode ffi_index)) bytes bytes2 of
| FFI_final outcome => (SOME (FinalFFI outcome), empty_locals s)
| FFI_return new_ffi new_bytes =>
let nmem = write_bytearray sz2 new_bytes s.memory s.memaddrs s.be in
(NONE, s with <| memory := nmem; ffi := new_ffi |>))
| _ => (SOME Error,s))
| res => (SOME Error,s))
Termination
wf_rel_tac `(inv_image (measure I LEX measure (prog_size (K 0)))
(\(xs,^s). (s.clock,xs)))` >>
rpt strip_tac >> TRY (full_simp_tac(srw_ss())[] >> DECIDE_TAC) >>
imp_res_tac fix_clock_IMP_LESS_EQ >> full_simp_tac(srw_ss())[] >>
imp_res_tac (GSYM fix_clock_IMP_LESS_EQ) >>
full_simp_tac(srw_ss())[set_var_def,upd_locals_def,dec_clock_def, LET_THM] >>
rpt (pairarg_tac >> full_simp_tac(srw_ss())[]) >>
every_case_tac >> full_simp_tac(srw_ss())[] >>
decide_tac
End
val evaluate_ind = theorem"evaluate_ind";
Theorem vshapes_args_rel_imp_eq_len_MAP:
!vshapes args.
LIST_REL (\vshape arg. SND vshape = shape_of arg) vshapes args ==>
LENGTH vshapes = LENGTH args /\ MAP SND vshapes = MAP shape_of args
Proof
ho_match_mp_tac LIST_REL_ind >> rw []
QED
(*
Definition evaluate_main_def:
(evaluate_main (Decl dname str,^s) = ARB) /\
(evaluate_main (Func fname rettyp partyp prog,s) = ARB)
End
*)
Theorem evaluate_clock:
!prog s r s'. (evaluate (prog,s) = (r,s')) ==>
s'.clock <= s.clock
Proof
recInduct evaluate_ind >>
REPEAT STRIP_TAC >>
POP_ASSUM MP_TAC >> ONCE_REWRITE_TAC [evaluate_def] >>
rw [] >> every_case_tac >>
fs [set_var_def, upd_locals_def, empty_locals_def, dec_clock_def, LET_THM] >>
rveq >> fs [] >>
rpt (pairarg_tac >> fs []) >>
every_case_tac >> fs [] >> rveq >>
imp_res_tac fix_clock_IMP_LESS_EQ >>
imp_res_tac LESS_EQ_TRANS >> fs [] >> rfs [] >>
‘s.clock <= s.clock + 1’ by DECIDE_TAC >>
res_tac >> fs []>>
Cases_on ‘op’>>fs[nb_op_def,sh_mem_load_def,sh_mem_store_def]>>
every_case_tac>>fs[set_var_def,empty_locals_def]>>rveq>>fs[]
QED
Theorem fix_clock_evaluate:
fix_clock s (evaluate (prog,s)) = evaluate (prog,s)
Proof
Cases_on `evaluate (prog,s)` >> fs [fix_clock_def] >>
imp_res_tac evaluate_clock >>
fs [GSYM NOT_LESS, state_component_equality]
QED
(* we save evaluate theorems without fix_clock *)
Theorem evaluate_ind[allow_rebind] =
REWRITE_RULE [fix_clock_evaluate] evaluate_ind
Theorem evaluate_def[allow_rebind,compute] =
REWRITE_RULE [fix_clock_evaluate] evaluate_def
(* observational semantics *)
Definition semantics_def:
semantics ^s start =
let prog = Call NONE (Label start) [] in
if ∃k. case FST (evaluate (prog,s with clock := k)) of
| SOME TimeOut => F
| SOME (FinalFFI _) => F
| SOME (Return _) => F
| _ => T
then Fail
else
case some res.
∃k t r outcome.
evaluate (prog, s with clock := k) = (r,t) ∧
(case r of
| (SOME (FinalFFI e)) => outcome = FFI_outcome e
| (SOME (Return _)) => outcome = Success
| _ => F) ∧
res = Terminate outcome t.ffi.io_events
of
| SOME res => res
| NONE =>
Diverge
(build_lprefix_lub
(IMAGE (λk. fromList
(SND (evaluate (prog,s with clock := k))).ffi.io_events) UNIV))
End
val _ = map delete_binding ["evaluate_AUX_def", "evaluate_primitive_def"];
val _ = export_theory();