forked from shannonbehr/AplysiaNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeuron.py
77 lines (60 loc) · 2.91 KB
/
Neuron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
class Neuron:
# This method initializes the neuron by setting the four IK parameters (a, b, c, and d) and the step size.
def __init__(self, a, b, c, d, initial_voltage, input_array, step_size, name):
self.a = a
self.b = b
self.c = c
self.d = d
self.input_array = input_array
self.step_size = step_size
self.name = name
# Time always starts at 0
self.time = 0
# The potential (v) and recovery (u) parameters are initialized as described in the IK model.
self.v = initial_voltage
self.u = self.v * b
# An array is initialized to hold the frequency calculations, one for each 0.000008 second interval.
self.frequency = []
# Since the biokinetic model always runs for 8.5 seconds, duration has been set to 8.5.
self.duration = 8.5
# This will hold the outputs from synapses for use in finding the next current
self.output = [0]*(int((1 / self.step_size) * self.duration))
# The index into the input and output arrays is initialized to 0
self.index = 0
# Returns the output as an array of currents at each time step
def get_name(self):
return self.name
# Returns the output as an array of currents at each time step
def get_output(self):
return self.output
# Returns the input array
def get_input(self):
return self.input_array
# Sets the input array to the given input array
def set_input(self, input_array):
self.input_array = input_array
# Sets the time to the given value and the current at this time to the given current
def update(self, time):
self.time = time
self.membrane_dt()
self.output[self.index] = self.v
self.index += 1
# This method updates the u and v parameter values using euler's method.
def run_eulers_method(self):
self.membrane_dt()
return
# This method computes the new voltage at each step. The following code was adapted from Tate Keller:
def eulers_method(self, prev_voltage, voltage_step):
return prev_voltage + self.step_size * voltage_step
# This method sets the membrane potential after euler's method. The following code was adapted from Tate Keller:
def membrane_dt(self):
# If v is above the threshold, v is assigned the reset parameter c and u is assigned u plus the recovery parameter d.
if self.v >= 30:
self.v = self.c
self.u = self.u + self.d
# If v is not above the threshold, euler's method is performed, and the step being passed in is multiplied by
# 1000 to convert from ms to s.
else:
self.v = self.eulers_method(self.v, (((0.04 * self.v**2) + (5 * self.v) + 140 - self.u + self.input_array[self.index - 1]) * 1000))
self.u = self.eulers_method(self.u, ((self.a * ((self.b * self.v) - self.u)) * 1000))
return