forked from DataXujing/PNASNet_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
114 lines (88 loc) · 3.51 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from __future__ import print_function, division
import os
import torch
from torch import nn,optim
import torch.nn.functional as F
import pandas as pd
import numpy as np
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
import pretrainedmodels
import torch
import pretrainedmodels.utils as utils
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import roc_curve,auc
import matplotlib.pyplot as plt
from PIL import Image
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#----------------model define-----------------
model_name = 'pnasnet5large'
print(pretrainedmodels.pretrained_settings['pnasnet5large'])
model = pretrainedmodels.__dict__[model_name](num_classes=6, pretrained=None)
model.to(device)
print(model)
# model.load_state_dict(torch.load("./checkpoint/pnasnet_100_0.8644578313253012.pth"))
model.load_state_dict(torch.load("./checkpoint/pnasnet_100_0.8644578313253012.pth"))
model.eval()
def get_label(file):
if "mc" in file:
label = 0
elif "sj" in file:
label = 1
elif "hj" in file:
label = 2
elif "jj" in file:
label = 3
elif "zc" in file:
label = 4
elif "wz" in file:
label = 5
return label
files = os.listdir("./data/test")
real_labels = []
pred_labels = []
pred_probs = []
for file in files:
real_labels.append(get_label(file))
path_img = "./data/test/"+file
img_1 = Image.open(path_img)
longer_side = max(img_1.size)
horizontal_padding = (longer_side - img_1.size[0]) / 2
vertical_padding = (longer_side - img_1.size[1]) / 2
img_1 = img_1.crop((-horizontal_padding,
-vertical_padding,
img_1.size[0] + horizontal_padding,
img_1.size[1] + vertical_padding))
img_1 = img_1.resize((331,331),Image.BICUBIC)
img_2 = transforms.ToTensor()(img_1)
img_2 = transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))(img_2)
input_tensor = img_2.unsqueeze(0) # 3x331x331 -> 1x3x331x331
input_tensor = input_tensor.to(device)
output_logits = model(input_tensor) # 1x6
output_prob = F.softmax(output_logits,dim =1).detach().cpu() #对每一行进行softmax
output_prob =output_prob.numpy() #对每一行进行softmax
pred_label = np.argmax(output_logits.detach().cpu()).item()
pred_labels.append(pred_label)
pred_probs.append(np.max(output_prob))
print("{} | {} | {}".format(file,pred_label,np.max(output_prob)))
target_names = ["盲肠","升结肠","横结肠","降结肠","直肠","未知"]
print("-----classification_report-----")
print(classification_report(real_labels,pred_labels,target_names=target_names))
print("----confusion_matrix-----")
cm = confusion_matrix(y_true=real_labels,y_pred=pred_labels)
print(cm)
print("------acc---------")
totalPic = np.sum(cm)
for i in range(6):
print("%10s = %.4f"%(target_names[i]+" acc",(totalPic-np.sum(cm[:,i])-np.sum(cm[i,:])+2*cm[i,i]) / totalPic))
print("----------Sensitivity / Specificity-----------")
print("%10s%15s%15s"%("","Sensitivity","Specificity"))
for i in range(6):
rsum = np.sum(cm[i,:])
print("%10s%12.2f\t%12.2f"%(target_names[i],cm[i,i]/rsum,1-(np.sum(cm[:,i])-cm[i,i])/(totalPic-rsum)))
print("------阴/阳性预测值----------")
print("%10s%10s%10s"%("","阳性预测值","阴性预测值"))
for i in range(len(target_names)):
pN = totalPic - np.sum(cm[:,i])
print("%10s%12.2f\t%12.2f"%(target_names[i],cm[i,i]/np.sum(cm[:,i]),(pN-np.sum(cm[i,:])+cm[i,i])/pN))