forked from Goodman-lab/DP5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Carbon_processing.py
executable file
·875 lines (569 loc) · 26.6 KB
/
Carbon_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
import nmrglue as ng
from scipy.stats import gaussian_kde as kde
from scipy.optimize import curve_fit
import re
import numpy as np
from scipy.stats import norm
from scipy.ndimage.filters import gaussian_filter1d as g1d
from scipy.ndimage.filters import convolve1d as c1d
from matplotlib import pyplot as plt
import pickle
from lmfit import Minimizer, Parameters, report_fit
import copy as copy
import itertools
import statsmodels.api as sm
import os
def process_carbon(NMR_file,settings,datatype):
total_spectral_ydata, spectral_ydata, spectral_xdata_ppm, threshold, corr_distance, uc = spectral_processing(
NMR_file,datatype)
total_spectral_ydata = edge_removal(total_spectral_ydata)
picked_peaks, simulated_ydata = iterative_peak_picking(total_spectral_ydata, 5, corr_distance)
picked_peaks = sorted(list(set(picked_peaks)))
picked_peaks, removed = solvent_removal(simulated_ydata, spectral_xdata_ppm, settings.Solvent, uc, picked_peaks)
return total_spectral_ydata,spectral_xdata_ppm,corr_distance,uc,picked_peaks,simulated_ydata,removed
########################################################################################################################
# processing
########################################################################################################################
def spectral_processing(file,datatype):
print("Processing Carbon Spectrum")
spectral_xdata_ppm, total_spectral_ydata, uc = initial_processing(file,datatype)
corr_distance = estimate_autocorrelation(total_spectral_ydata)
convolved_y = gaussian_convolution(corr_distance,total_spectral_ydata)
binary_map_regions =[]
#threshold_vector =[4,3.7,3.5,3,2,1,0.9,0.8,0.7,0.6,0.5]
threshold_vector =[3,2.9,2.8,2.7,2.6,2.5,2.2,2,1,0.9,0.8,0.7,0.6,0.5]
run = 0
while len(binary_map_regions) < 2:
threshold = threshold_vector[run]
run += 1
picked_points = iterative_point_picking(convolved_y,threshold)
binary_map_regions,binary_map_list = binary_map(picked_points, uc,convolved_y)
globalangles, phased_peak_regions, convolved_y_phased = estimate_phase_angles(convolved_y, binary_map_regions, corr_distance)
real_convolved_y_phased = list(np.real(convolved_y_phased))
picked_points_region = iterative_point_picking_region(binary_map_regions,real_convolved_y_phased,threshold)
picked_peaks_region = peak_picking_region(real_convolved_y_phased,picked_points_region)
p0, p1 = linear_regression(picked_peaks_region, globalangles,real_convolved_y_phased,binary_map_regions)
total_spectral_ydata,spectral_ydata = final_phasing(convolved_y, p0, p1)
total_spectral_ydata = total_spectral_ydata/np.max(total_spectral_ydata)
return total_spectral_ydata,spectral_ydata,spectral_xdata_ppm,threshold,corr_distance,uc
def jcamp_guess_udic(dic, data):
"""
Guess parameters of universal dictionary from dic, data pair.
Parameters
----------
dic : dict
Dictionary of JCAMP-DX parameters.
data : ndarray
Array of NMR data.
Returns
-------
udic : dict
Universal dictionary of spectral parameters.
"""
# create an empty universal dictionary
udic = ng.fileiobase.create_blank_udic(1)
# update default values (currently only 1D possible)
# "label"
try:
label_value = dic[".OBSERVENUCLEUS"][0].replace("^", "")
udic[0]["label"] = label_value
except KeyError:
# sometimes INSTRUMENTAL PARAMETERS is used:
try:
label_value = dic["INSTRUMENTALPARAMETERS"][0].replace("^", "")
udic[0]["label"] = label_value
except KeyError:
pass
# "obs"
obs_freq = None
try:
obs_freq = float(dic[".OBSERVEFREQUENCY"][0])
udic[0]["obs"] = obs_freq
except KeyError:
pass
# "size"
if isinstance(data, list):
data = data[0] # if list [R,I]
if data is not None:
udic[0]["size"] = len(data)
# "sw"
# get firstx, lastx and unit
firstx, lastx, isppm = ng.jcampdx._find_firstx_lastx(dic)
# ppm data: convert to Hz
if isppm:
if obs_freq:
firstx = firstx * obs_freq
lastx = lastx * obs_freq
else:
firstx, lastx = (None, None)
if firstx is not None and lastx is not None:
udic[0]["sw"] = abs(lastx - firstx)
# keys not found in standard&required JCAMP-DX keys and thus left default:
# car, complex, encoding
udic[0]['car'] = firstx - abs(lastx - firstx)/2
return udic
def initial_processing(file,datatype):
if datatype =='jcamp':
dic, total_spectral_ydata = ng.jcampdx.read(file) # read file
total_spectral_ydata = total_spectral_ydata[0] + 1j * total_spectral_ydata[1]
total_spectral_ydata = ng.proc_base.ifft_positive(total_spectral_ydata)
else:
dic, total_spectral_ydata = ng.bruker.read(file) # read file
total_spectral_ydata = ng.bruker.remove_digital_filter(dic, total_spectral_ydata) # remove the digital filter
total_spectral_ydata = ng.proc_base.zf_double(total_spectral_ydata, 2) # zero filling once
total_spectral_ydata = ng.proc_base.fft_positive(total_spectral_ydata) # Fourier transform
real_part = ng.proc_bl.baseline_corrector(np.real(total_spectral_ydata), wd=2)
im_part = ng.proc_bl.baseline_corrector(np.imag(total_spectral_ydata), wd=2)
total_spectral_ydata = real_part + 1j *im_part
if datatype == 'jcamp':
udic = jcamp_guess_udic(dic, total_spectral_ydata)
else:
udic = ng.bruker.guess_udic(dic, total_spectral_ydata) # sorting units
# total_spectral_ydata = ng.proc_autophase.autops(total_spectral_ydata, 'acme') # automatic phase correction
uc = ng.fileiobase.uc_from_udic(udic) # unit conversion element
spectral_xdata_ppm = uc.ppm_scale() # ppmscale creation
maximum= np.max(total_spectral_ydata)
total_spectral_ydata = total_spectral_ydata/np.max(total_spectral_ydata)
return spectral_xdata_ppm, total_spectral_ydata, uc
def estimate_autocorrelation(total_spectral_ydata):
real_part = np.real(total_spectral_ydata)
real_part_copy = np.real(total_spectral_ydata)
gzero = real_part * real_part
gzero = np.sum(gzero)
gdx = gzero
counter = 0
while gdx > 0.6 * gzero:
real_part_copy = np.roll(real_part_copy, counter)
gdx = real_part * real_part_copy
counter += 1
gdx = np.sum(gdx)
corr_distance = counter
return corr_distance
def gaussian_convolution(corr_distance, total_spectral_ydata):
real_part = np.real(total_spectral_ydata)
im_part = np.imag(total_spectral_ydata)
real_convolved_y = g1d(real_part, corr_distance)
im_convolved_y = g1d(im_part, corr_distance)
convolved_y = np.array(real_convolved_y) + 1j * np.array(im_convolved_y)
convolved_y = convolved_y / np.max(convolved_y)
return convolved_y
def lorentz_convolution(corr_distance, total_spectral_ydata):
def lorentzian(p, w, p0):
x = (p0 - p) / (w / 2)
L = 1 / (1 + x ** 2)
return L
def build_kernel(corr):
kernel_length = corr * 10
vector = np.arange(0, kernel_length)
p0 = kernel_length // 2
kernel = lorentzian(vector, corr, p0)
return kernel
real_part = np.real(total_spectral_ydata)
im_part = np.imag(total_spectral_ydata)
kernel = build_kernel(corr_distance)
real_convolved_y = c1d(real_part, kernel)
im_convolved_y = c1d(im_part, kernel)
real_convolved_y = c1d(real_convolved_y, -1 * kernel)
im_convolved_y = c1d(im_convolved_y, -1 * kernel)
convolved_y = np.array(real_convolved_y) + 1j * np.array(im_convolved_y)
return convolved_y
def iterative_point_picking(convolved_y, threshold):
real_convolved_y = np.real(convolved_y)
copy_convolved_y = np.array(real_convolved_y)
picked_points = []
pickednumber = 1
while pickednumber > 0:
mu, std = norm.fit(copy_convolved_y)
index = np.where(copy_convolved_y - mu > threshold * std)
pickednumber = len(index[0])
picked_points.extend(np.ndarray.tolist(index[0]))
copy_convolved_y = np.delete(copy_convolved_y, index, axis=0)
copy_convolved_y = np.array(real_convolved_y)
pickednumber = 1
while pickednumber > 0:
mu, std = norm.fit(copy_convolved_y)
index = np.where(copy_convolved_y - mu < -threshold * std)
pickednumber = len(index[0])
picked_points.extend(np.ndarray.tolist(index[0]))
copy_convolved_y = np.delete(copy_convolved_y, index, axis=0)
picked_points = sorted(picked_points)
return picked_points
def binary_map(picked_points, uc, convolved_y):
picked_points = np.array(picked_points)
# find where peak blocks are
binary_map_regions = [[picked_points[0]]]
for x in range(0, len(picked_points) - 1):
if picked_points[x + 1] != picked_points[x] + 1:
binary_map_regions[-1].append(picked_points[x])
binary_map_regions.append([picked_points[x + 1]])
binary_map_regions[-1].append(picked_points[-1])
# extend blocks by 50 Hz
for block in binary_map_regions:
start = uc.hz(block[0])
end = start + 50
end_point = uc(end, "Hz")
block[0] = end_point
start = uc.hz(block[1])
end = start - 50
end_point = uc(end, "Hz")
block[1] = end_point
# draw binary map
binary_map_list = np.zeros(len(convolved_y))
for block in binary_map_regions:
binary_map_list[block[0]:block[1]:1] = 1
# stitch blocks together
blocks = np.where(binary_map_list == 1)
blocks = blocks[0] - 1
binary_map_regions = [[blocks[0]]]
for element in range(0, len(blocks) - 1):
if blocks[element + 1] != blocks[element] + 1:
binary_map_regions[-1].append(blocks[element])
binary_map_regions.append([blocks[element + 1]])
binary_map_regions[-1].append(blocks[-1])
return binary_map_regions, binary_map_list
def estimate_phase_angles(convolved_y, binary_map_regions, corr_distance):
convolved_y_phased = np.array(convolved_y)
def inte(binary_map_regions, peak_regions, corr_distance):
## for each region determine the baseline
integrals = [0] * len(binary_map_regions)
# first find average of surrounding points to ends of binary map regions to draw base line
baselines_end = [[0, 0] for i in range(len(binary_map_regions))]
baselines = [[] for i in range(0, len(binary_map_regions))]
# find baseline endpoints
for region in range(0, len(binary_map_regions)):
for point in range(0, corr_distance - 1):
baselines_end[region][0] += peak_regions[region][point]
baselines_end[region][0] = baselines_end[region][0] / corr_distance
for point in range(0, corr_distance):
baselines_end[region][1] += peak_regions[region][-point]
baselines_end[region][1] = baselines_end[region][1] / corr_distance
## draw baselines
baselines[region] = np.linspace(baselines_end[region][0], baselines_end[region][1],
len(peak_regions[region]) - 2 * corr_distance)
## integrate each region below the baseline
for point in range(0, len(baselines[region])):
if peak_regions[region][point + corr_distance] < baselines[region][point]:
integrals[region] += abs(
peak_regions[region][point + corr_distance] - baselines[region][point])
return integrals
coarse_angle = np.linspace(-np.pi / 2, np.pi / 2, 1000)
integral_vector = [0] * 1000
counter = 0
# integration
for angle in coarse_angle:
copy_total_spectral_ydata = convolved_y * np.exp(-angle * 1j)
peak_regions = [0] * len(binary_map_regions)
for region in range(0, len(binary_map_regions)):
peak_regions[region] = copy_total_spectral_ydata[
binary_map_regions[region][0]:binary_map_regions[region][1]:1]
integral_vector[counter] = inte(binary_map_regions, peak_regions, corr_distance)
counter = counter + 1
# find maximum integral for each region and store angles
integral_vector = np.array(integral_vector)
maxvector = np.amin(integral_vector, 0)
counter = 0
angle1 = [0] * len(binary_map_regions)
for element in list(maxvector):
maxangle = np.where(integral_vector == element)
angle1[counter] = coarse_angle[maxangle[0][0]]
counter = counter + 1
# phase each region of the spectrum indepedently
for region in range(0, len(peak_regions)):
convolved_y_phased[binary_map_regions[region][0]:binary_map_regions[region][1]:1] = convolved_y_phased[
binary_map_regions[
region][0]:
binary_map_regions[
region][
1]:1] * np.exp(
-angle1[region] * 1j)
globalangles = [angle1[i] for i in range(0, len(binary_map_regions))]
## phase each peak region separately
phased_peak_regions = []
copy_total_spectral_ydata = convolved_y
peak_regions = [0] * len(binary_map_regions)
for region in range(0, len(binary_map_regions)):
peak_regions[region] = copy_total_spectral_ydata[
binary_map_regions[region][0]:binary_map_regions[region][1]:1]
counter = 0
for region in peak_regions:
phased_peak_regions.append(region * np.exp(-globalangles[counter] * 1j))
counter += 1
return globalangles, phased_peak_regions, convolved_y_phased
def iterative_point_picking_region(binary_map_regions, real_convolved_y_phased, threshold):
copy_convolved_y = np.array(real_convolved_y_phased)
picked_points = []
pickednumber = 1
while pickednumber > 0:
mu, std = norm.fit(copy_convolved_y)
index = np.where((copy_convolved_y - mu > threshold * std) | (copy_convolved_y - mu < threshold * std))
picked_points.extend(np.ndarray.tolist(index[0]))
pickednumber = len(index[0])
copy_convolved_y = np.delete(copy_convolved_y, index, axis=0)
picked_points = sorted(picked_points)
picked_points_region = []
for region in binary_map_regions:
picked_points_region.append([])
for point in picked_points:
if point > region[0] and point < region[1]:
picked_points_region[-1].append(point)
return picked_points_region
def peak_picking_region(real_convolved_y_phased, picked_points_region):
picked_peaks_region = []
for region in range(0, len(picked_points_region)):
picked_peaks_region.append([])
for index in picked_points_region[region]:
peak = real_convolved_y_phased[index]
if peak > real_convolved_y_phased[index + 1] and peak > real_convolved_y_phased[index - 1]:
picked_peaks_region[-1].append(index)
elif peak < real_convolved_y_phased[index + 1] and peak < real_convolved_y_phased[index - 1]:
picked_peaks_region[-1].append(index)
return picked_peaks_region
def linear_regression(picked_peaks_region, globalangles, real_convolved_y_phased, binary_map_regions):
# region weighting vector
region_weighting_matrix = [1] * len(picked_peaks_region)
for index,region in enumerate(picked_peaks_region):
region_weighting_matrix[index] = max([abs(real_convolved_y_phased[peak]) for peak in region])
max_weight = max(region_weighting_matrix)
region_weighting_matrix = [i/max_weight for i in region_weighting_matrix]
# define centres of regions
region_centres = []
for region in binary_map_regions:
region_centres.append((1 - (region[0] + region[1]) / (2 * len(real_convolved_y_phased))))
#### regression and outlier analysis
number_of_outliers = 1
while number_of_outliers > 0:
region_centres_regression = sm.add_constant(region_centres)
wls_model = sm.WLS(globalangles, region_centres_regression,weights=region_weighting_matrix)
results = wls_model.fit()
params = results.params
predictions = [params[1] * i + params[0] for i in region_centres]
# remove maximum outlier more than 0.6 rad from estimate
differences = [abs(predictions[angle] - globalangles[angle]) for angle in range(0, len(globalangles))]
maxdifference = max(differences)
if maxdifference > 0.6:
index = differences.index(maxdifference)
globalangles.pop(index)
region_centres.pop(index)
region_weighting_matrix.pop(index)
else:
number_of_outliers = 0
p0 = params[0]
p1 = params[1]
return p0, p1
def final_phasing(total_spectral_ydata, p0, p1):
# total_spectral_ydata = ng.proc_base.ps(total_spectral_ydata, p0=p0, p1=p1)
relativeposition = np.linspace(1, 0, len(total_spectral_ydata))
angle = p0 + p1 * relativeposition
total_spectral_ydata = total_spectral_ydata * np.exp(-1j * angle)
total_spectral_ydata = ng.proc_bl.baseline_corrector(total_spectral_ydata, wd=2)
spectral_ydata = ng.proc_base.di(total_spectral_ydata) # discard the imaginaries
spectral_ydata = np.ndarray.tolist(spectral_ydata)
total_spectral_ydata = np.real(total_spectral_ydata)
return total_spectral_ydata, spectral_ydata
def edge_removal(total_spectral_ydata):
if total_spectral_ydata[0] > 0:
i = 0
while total_spectral_ydata[i] > 0:
total_spectral_ydata[i] = 0
i += 1
else:
i = 0
while total_spectral_ydata[i] < 0:
total_spectral_ydata[i] = 0
i += 1
if total_spectral_ydata[-1] > 0:
i =1
while total_spectral_ydata[-i] > 0:
total_spectral_ydata[-i] = 0
i += 1
else:
i = 1
while total_spectral_ydata[-i] < 0:
total_spectral_ydata[-i] = 0
i += 1
return total_spectral_ydata
def peak_pruning(picked_peaks, total_spectral_ydata, point_ppm,corr_distance):
distance = 0.25/point_ppm
distance = corr_distance * point_ppm
grouped_peaks = [[picked_peaks[0]]]
for index in range(0, len(picked_peaks) - 1):
if picked_peaks[index] + distance > picked_peaks[index + 1]:
grouped_peaks[-1].append(picked_peaks[index + 1])
else:
grouped_peaks.append([picked_peaks[index + 1]])
new_peaks = []
for group in grouped_peaks:
group_amps = total_spectral_ydata[group]
maxindex = np.argmax(group_amps)
new_peaks.append(group[maxindex])
new_peaks = np.array(new_peaks)
picked_peaks = list(new_peaks)
picked_peaks = np.array(new_peaks)
return picked_peaks
def rounding_variables(all_peak_locations_ppm, final_solvent_peak_locations, assigned_peaks_sorted_descending, differences):
##creates rounded values
rounded_picked_locations_ppm = np.around(all_peak_locations_ppm,
decimals=2) # [round(x, 2) for x in all_peak_locations_ppm]
rounded_solvent_locations = np.around(final_solvent_peak_locations,
decimals=2) # [round(x, 2) for x in final_solvent_peak_locations]
rounded_assigned_peaks_sorted_descending = np.around(assigned_peaks_sorted_descending, decimals=2)
rounded_diff = [round(x, 3) for x in differences]
return rounded_picked_locations_ppm, rounded_solvent_locations, rounded_assigned_peaks_sorted_descending, rounded_diff
def simulate_calc_data(spectral_xdata_ppm, calculated_locations, simulated_ydata):
###simulate calcutated data
simulated_calc_ydata = np.zeros(len(spectral_xdata_ppm))
for peak in calculated_locations:
y = np.exp(-0.5 * ((spectral_xdata_ppm - peak) / 0.002) ** 2)
simulated_calc_ydata += y
scaling_factor = np.amax(simulated_ydata) / np.amax(simulated_calc_ydata)
simulated_calc_ydata = simulated_calc_ydata*scaling_factor
return simulated_calc_ydata
def lorentzian(p, w, p0, A):
x = (p0 - p) / (w / 2)
L = A / (1 + x ** 2)
return L
def lorenz_curves(params, x, picked_points):
y = np.zeros(len(x))
for peak in picked_points:
y += lorentzian(x, params['width' + str(peak)], params['pos' + str(peak)], params['amp' + str(peak)])
return y
def gaussian(p,w,p0,A):
y = A *np.exp(-((p - p0)**2)/(2*(w)**2))
return y
def minimisation(next_peak,fit_y, total_spectral_ydata,corr_distance):
region = np.arange(max(0,next_peak - 100), min(next_peak +100,len(total_spectral_ydata)))
params = Parameters()
params.add('amp' + str(next_peak), value=total_spectral_ydata[next_peak],vary = False,min = 0)
params.add('width' + str(next_peak), value=4 * corr_distance, vary=True,min = 1*corr_distance,max = 8*corr_distance)
params.add('pos' + str(next_peak), value=next_peak, vary=False)
# print('minimising')
out = Minimizer(residual, params,
fcn_args=(fit_y[region],next_peak,region, total_spectral_ydata[region]))
results = out.minimize()
# append the results params to the total params
fit_yc = lorentzian(np.arange(len(total_spectral_ydata)), results.params['width' + str(next_peak)],
results.params['pos' + str(next_peak)], results.params['amp' + str(next_peak)]) + fit_y
return fit_yc
def residual(params,fit_y,next_peak, x, y_data):
y = lorentzian(x, params['width' + str(next_peak)], params['pos' + str(next_peak)], params['amp' + str(next_peak)]) + fit_y
difference = abs(y - y_data)
return difference
def iterative_peak_picking(total_spectral_ydata,threshold,corr_distance,):
mu, std = norm.fit(total_spectral_ydata[0:1000])
picked_peaks = []
#find all maxima
maxima = []
for point in range(1,len(total_spectral_ydata)-1):
if (total_spectral_ydata[point] > total_spectral_ydata[point+1]) & (total_spectral_ydata[point] > total_spectral_ydata[point-1]):
maxima.append(point)
#start fitting process
fit_y = np.zeros(len(total_spectral_ydata))
while len(maxima) > 0:
params = Parameters()
#find peak with greatest amplitude:
ind1 = np.argmax(total_spectral_ydata[maxima])
peak = maxima[ind1]
picked_peaks.append(peak)
fit_y = minimisation(peak, fit_y, total_spectral_ydata, corr_distance)
new_maxima = []
for ind2 in maxima:
if total_spectral_ydata[ind2] > threshold*std + fit_y[ind2]:
new_maxima.append(ind2)
maxima = copy.copy(new_maxima)
picked_peaks = sorted(picked_peaks)
return picked_peaks,fit_y
def first_order_peak(start_ppm, J_vals, x_data, corr_distance, uc,m):
#new first order peak generator using the method presented in Hoye paper
start = uc(str(start_ppm) + "ppm")
start_Hz = uc.hz(start)
J_vals = np.array(J_vals)
if len(J_vals) > 0:
peaks = np.zeros((2*m +1)**len(J_vals))
if m == 0.5:
l =[1,-1]
if m == 1:
l= [1,0,-1]
#signvector generator
signvectors = itertools.product(l, repeat=len(J_vals))
shifts = []
for ind,sv in enumerate(signvectors):
shift = J_vals * sv
shift = start_Hz + 0.5 * (np.sum(shift))
peaks[ind] = shift
peaks = np.sort(peaks)
peak_vector = np.array(sorted(list(set(peaks)),reverse = True))
amp_vector = np.zeros(len(peak_vector))
for peak in peaks:
index = np.where(peak_vector == peak)
amp_vector[index] += 1
pv = []
for index,peak in enumerate(peak_vector):
pv.append(uc(peak,"Hz"))
peak_vector = pv
else:
peak_vector = start
split_params = Parameters()
for index, peak in enumerate(peak_vector):
split_params.add('amp' + str(peak), value=amp_vector[index])
split_params.add('pos' + str(peak), value=peak)
split_params.add('width' + str(peak), value=2 * corr_distance)
y = lorenz_curves(split_params, x_data, peak_vector)
y= y/np.max(y)
return split_params,peak_vector,amp_vector,y
def solvent_removal(simulated_y_data,spectral_xdata_ppm,solvent,uc,picked_peaks):
if solvent == 'chloroform':
exp_ppm = [77]
Jv = [[64]]
elif solvent == 'dimethylsulfoxide':
exp_ppm = [39.51]
Jv = [[42,42,42]]
elif solvent == 'pyridine':
exp_ppm = [150.35,135.91,123.87]
Jv= [[55,55],[49,49],[50,50]]
elif solvent == 'methanol':
exp_ppm = [49.15]
Jv = [[42.8,42.8,42.8]]
elif solvent == 'benzene':
exp_ppm = [128.39]
Jv = [[24.3]]
else:
exp_ppm = []
Jv =[[]]
#remove all solvent peaks
removed = []
for J,p in zip(Jv,exp_ppm):
exp = uc(p,"ppm")
region = np.arange(exp - 1000, exp+1000)
peak_region = []
for peak in picked_peaks:
if (peak > exp -1000) & (peak < exp+1000):
peak_region.append(peak)
#simulate solvent curve
#find peak centre
if region[0] + region[-1] & 1:
centre = (int((region[0] + region[-1] + 1) / 2))
else:
centre = (int((region[0] + region[-1]) / 2))
centre = uc.ppm(centre)
params,peak_vector, amp_vector, y = first_order_peak(centre, J,np.array(region), 1, uc,1)
#use simulated curve in convolution
convolved_y = np.convolve(simulated_y_data[region] , y,'same')
mxpoint = np.argmax(convolved_y)
mxppm = uc.ppm(region[mxpoint])
#simulate peak in new position
params,fit_s_peaks, amp_vector, fit_s_y = first_order_peak(mxppm, J, np.array(region), 1, uc,1)
#find average of fitted peaks for referencing:
av = sum(fit_s_peaks)/len(fit_s_peaks)
avppm = uc.ppm(av)
spectral_xdata_ppm -= avppm - p
to_remove = []
# find picked peaks closest to the "fitted" solvent multiplet
for peak in fit_s_peaks:
i = np.abs(np.array(picked_peaks) - peak).argmin()
to_remove.append(i)
removed.extend([picked_peaks[i] for i in to_remove])
to_remove = sorted(list(set(to_remove)),reverse=True)
for peak in to_remove:
picked_peaks.pop(peak)
removed = np.array(removed)
return picked_peaks,removed