forked from RotBotSlicer/Transform
-
Notifications
You must be signed in to change notification settings - Fork 16
/
Transformation_STL.py
122 lines (109 loc) · 5.15 KB
/
Transformation_STL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
from stl import mesh
import time
import os
def refinement_one_triangle(triangle):
"""
Compute a refinement of one triangle. On every side, the midpoint is added. The three corner points and three
midpoints result in four smaller triangles.
:param triangle: array
array of three points of shape (3, 3) (one triangle)
:return: array
array of shape (4, 3, 3) of four triangles
"""
point1 = triangle[0]
point2 = triangle[1]
point3 = triangle[2]
midpoint12 = (point1 + point2) / 2
midpoint23 = (point2 + point3) / 2
midpoint31 = (point3 + point1) / 2
triangle1 = np.array([point1, midpoint12, midpoint31])
triangle2 = np.array([point2, midpoint23, midpoint12])
triangle3 = np.array([point3, midpoint31, midpoint23])
triangle4 = np.array([midpoint12, midpoint23, midpoint31])
return np.array([triangle1, triangle2, triangle3, triangle4])
def refinement_triangulation(triangle_array, num_iterations):
"""
Compute a refinement of a triangulation using the refinement_four_triangles function.
The number of iteration defines, how often the triangulation has to be refined; n iterations lead to
4^n times many triangles.
:param triangle_array: array
array of shape (num_triangles, 3, 3) of triangles
:param num_iterations: int
:return: array
array of shape (num_triangles*4^num_iterations, 3, 3) of triangles
"""
refined_array = triangle_array
for i in range(0, num_iterations):
n_triangles = refined_array.shape[0] * 4
refined_array = np.array(list(map(refinement_one_triangle, refined_array)))
refined_array = np.reshape(refined_array, (n_triangles, 3, 3))
return refined_array
def transformation_cone(points, cone_type):
"""
Compute the cone-transformation (x', y', z') = (\sqrt{2}x, \sqrt{2}y, z + \sqrt{x^{2} + y^{2}}) ('outward') or
(x', y', z') = (\sqrt{2}x, \sqrt{2}y, z - \sqrt{x^{2} + y^{2}}) ('inward') for a list of points
:param points: array
array of points of shape ( , 3)
:param cone_type: string
String, either 'outward' or 'inward', defines which transformation should be used
:return: array
array of transformed points, of same shape as input array
"""
if cone_type == 'outward':
c = 1
elif cone_type == 'inward':
c = -1
else:
raise ValueError('{} is not a admissible type for the transformation'.format(cone_type))
T = (lambda x, y, z: np.array([np.sqrt(2) * x, np.sqrt(2) * y, z + c * np.sqrt(x ** 2 + y ** 2)]))
points_transformed = list(map(T, points[:, 0], points[:, 1], points[:, 2]))
return np.array(points_transformed)
def transformation_STL_file(path, output_dir, cone_type, nb_iterations):
"""
Read a stl-file, refine the triangulation, transform it according to the cone-transformation and save the
transformed data.
:param path: string
path to the stl file
:param output_dir:
path of directory, where transformed STL-file will be saved
:param cone_type: string
String, either 'outward' or 'inward', defines which transformation should be used
:param nb_iterations: int
number of iterations, the triangulation should be refined before the transformation
:return: mesh object
transformed triangulation as mesh object which can be stored as stl file
"""
start = time.time()
my_mesh = mesh.Mesh.from_file(path)
vectors = my_mesh.vectors
vectors_refined = refinement_triangulation(vectors, nb_iterations)
vectors_refined = np.reshape(vectors_refined, (-1, 3))
vectors_transformed = transformation_cone(vectors_refined, cone_type)
vectors_transformed = np.reshape(vectors_transformed, (-1, 3, 3))
my_mesh_transformed = np.zeros(vectors_transformed.shape[0], dtype=mesh.Mesh.dtype)
my_mesh_transformed['vectors'] = vectors_transformed
my_mesh_transformed = mesh.Mesh(my_mesh_transformed)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
file_name = file_path[file_path.rfind('/'):]
file_name = file_name.replace('.stl', '_' + transformation_type + '_transformed.stl')
output_path = output_dir + file_name
my_mesh_transformed.save(output_path)
end = time.time()
print('STL file generated in {:.1f}s, saved in {}'.format(end - start, output_path))
return None
# -------------------------------------------------------------------------------
# Apply the functions for a STL file
# -------------------------------------------------------------------------------
# STL transformation function parameters
file_path = '/path/to/stl/file.stl'
dir_transformed = '/path/to/save/transformation/'
transformation_type = 'inward' # inward or outward
number_iterations = 4 # number iterations for triangulation refinement
# STL transformation function call
transformation_STL_file(path=file_path,
output_dir=dir_transformed,
cone_type=transformation_type,
nb_iterations=number_iterations,
)