diff --git a/src/AutoDiff.jl b/src/AutoDiff.jl index 3e71e14..0372c71 100644 --- a/src/AutoDiff.jl +++ b/src/AutoDiff.jl @@ -25,19 +25,16 @@ function _solve_jacobian_θ(mcp::MCPSolver.PrimalDualMCP, solution, θ) ) (; x, y, s, ϵ) = solution - ∂z∂θ = -mcp.∇F_z(x, y, s; θ, ϵ) \ mcp.∇F_θ(x, y, s; θ, ϵ) + ∂z∂θ = + LinearAlgebra.qr(-collect(mcp.∇F_z(x, y, s; θ, ϵ)), LinearAlgebra.ColumnNorm()) \ + collect(mcp.∇F_θ(x, y, s; θ, ϵ)) - SparseArrays.sparse(∂z∂θ) + ∂z∂θ end -function ChainRulesCore.rrule( - ::typeof(MCPSolver.solve), - solver_type::MCPSolver.SolverType, - mcp::MCPSolver.PrimalDualMCP; - θ, - kwargs..., -) - solution = MCPSolver.solve(solver_type, mcp; θ, kwargs...) +function ChainRulesCore.rrule(::typeof(MCPSolver.solve), solver_type, mcp, θ; kwargs...) + println("yoyoyyo") + solution = MCPSolver.solve(solver_type, mcp, θ; kwargs...) project_to_θ = ChainRulesCore.ProjectTo(θ) function solve_pullback(∂solution) @@ -52,6 +49,7 @@ function ChainRulesCore.rrule( ∂l∂x = ∂solution.x ∂l∂y = ∂solution.y ∂l∂s = ∂solution.s +# @infiltrate project_to_θ(∂z∂θ' * [∂l∂x; ∂l∂y; ∂l∂s]) end @@ -63,8 +61,8 @@ end function MCPSolver.solve( solver_type::MCPSolver.SolverType, - mcp::MCPSolver.PrimalDualMCP; - θ::AbstractVector{<:ForwardDiff.Dual{T}}, + mcp::MCPSolver.PrimalDualMCP, + θ::AbstractVector{<:ForwardDiff.Dual{T}}; kwargs..., ) where {T} # strip off the duals diff --git a/src/game.jl b/src/game.jl index 69534ef..86a203d 100644 --- a/src/game.jl +++ b/src/game.jl @@ -156,7 +156,7 @@ function solve( y₀ = ones(sum(game.dims.μ) + game.dims.μ̃), tol = 1e-4, ) - (; x, y, s, kkt_error, status) = solve(solver_type, game.mcp; θ, x₀, y₀, tol) + (; x, y, s, kkt_error, status) = solve(solver_type, game.mcp, θ; x₀, y₀, tol) # Unpack primals per-player for ease of access later. end_dims = cumsum(game.dims.x) diff --git a/src/solver.jl b/src/solver.jl index 069d2e9..1ebb2ee 100644 --- a/src/solver.jl +++ b/src/solver.jl @@ -17,8 +17,8 @@ when the previous subproblem is solved in fewer iterations. """ function solve( ::InteriorPoint, - mcp::PrimalDualMCP; - θ, + mcp::PrimalDualMCP, + θ; x₀ = zeros(mcp.unconstrained_dimension), y₀ = ones(mcp.constrained_dimension), tol = 1e-4, diff --git a/test/runtests.jl b/test/runtests.jl index cb131c3..136f673 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -45,7 +45,7 @@ using FiniteDiff: FiniteDiff constrained_dimension = length(b), parameter_dimension = size(M, 1), ) - sol = MCPSolver.solve(MCPSolver.InteriorPoint(), mcp; θ) + sol = MCPSolver.solve(MCPSolver.InteriorPoint(), mcp, θ) check_solution(sol) end @@ -57,7 +57,7 @@ using FiniteDiff: FiniteDiff fill(Inf, size(M, 1) + length(b)); parameter_dimension = size(M, 1), ) - sol = MCPSolver.solve(MCPSolver.InteriorPoint(), mcp; θ) + sol = MCPSolver.solve(MCPSolver.InteriorPoint(), mcp, θ) check_solution(sol) end @@ -73,15 +73,18 @@ using FiniteDiff: FiniteDiff ) function f(θ) - sol = MCPSolver.solve(MCPSolver.InteriorPoint(), mcp; θ) - sum(sol.x .^ 2) + sum(sol.y .^ 2) + sol = MCPSolver.solve(MCPSolver.InteriorPoint(), mcp, θ) + #@infiltrate + sum(sol.x .^ 2) + sum(sol.y .^ 2) + sum(sol.s .^ 2) end + #@infiltrate + ∇_autodiff_reverse = only(Zygote.gradient(f, θ)) - ∇_autodiff_forward = only(Zygote.gradient(θ -> Zygote.forwarddiff(f, θ), θ)) + #∇_autodiff_forward = only(Zygote.gradient(θ -> Zygote.forwarddiff(f, θ), θ)) ∇_finitediff = FiniteDiff.finite_difference_gradient(f, θ) @test isapprox(∇_autodiff_reverse, ∇_finitediff; atol = 1e-3) - @test isapprox(∇_autodiff_reverse, ∇_autodiff_forward; atol = 1e-3) + #@test isapprox(∇_autodiff_reverse, ∇_autodiff_forward; atol = 1e-3) end end