-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcam.py
93 lines (71 loc) · 2.84 KB
/
cam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import cv2
import numpy as np
from collections import deque
import tflearn
from tflearn.data_preprocessing import ImagePreprocessing
emotions = ["Fear", "Happy", "Sad", "Surprise", "Neutral"]
gy_offset = 0
gx_offset = 0
class Camera(object):
def __init__(self,model:tflearn.DNN):
print("get model")
self.model_emo=model
print("load model")
self.video = cv2.VideoCapture(0)
# print(self.video.isOpened())
self.face_cascade = cv2.CascadeClassifier(
'haarcascade_frontalface_default.xml')
self.emotion_queue=deque(maxlen=10)
self.emotion=""
self.emotion_prob=0
self.prediction=0
self.processedimg=0
self.emotion_idx=0
def __del__(self):
self.video.release()
def get_emotion(self):
return self.emotion;
def get_face(self):
global gy_offset
global gx_offset
success, frame = self.video.read()
grayed = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = self.face_cascade.detectMultiScale(grayed, 1.3, 5)
for (x, y, w, h) in faces:
y_offset = y
x_offset = x+w
gy_offset = y_offset
gx_offset = x_offset
'''
if grayed.shape[0] < y_offset :
pass
'''
roi_gray = grayed[y:y + h, x:x + w]
image_scaled = np.array(cv2.resize(roi_gray, (48, 48)), dtype=float)
image_processed = image_scaled.flatten()
processedimage = image_processed.reshape([-1, 48, 48, 1])
# print("predict image")
prediction = self.model_emo.predict(processedimage)
# print("gender prediction! : " + str(list(prediction_gender)))
emotion_probability, emotion_index = max((val, idx) for (idx, val) in enumerate(prediction[0]))
self.emotion = emotions[emotion_index]
# self.emotion_queue.appendleft((emotion_probability, emotion))
print(self.emotion)
# 영상에 말풍선을 추가.
if self.emotion != "" :
img_path = "img/" + self.emotion + ".png"
overlay_img = cv2.imread(img_path,cv2.IMREAD_UNCHANGED)
resize_overlay_img = cv2.resize(overlay_img,(200,200))
y1, y2 = gy_offset, gy_offset + resize_overlay_img.shape[0]
x1, x2 = gx_offset, gx_offset + resize_overlay_img.shape[1]
alpha_s = resize_overlay_img[:, :, 3] / 255.0
alpha_l = 1.0 - alpha_s
type(frame)
print("x1,x2:",x1,",",x2,"y1,y2",y1,",",y2)
try :
for c in range(0, 3):
frame[y1:y2, x1:x2, c] = (alpha_s * resize_overlay_img[:, :, c] +
alpha_l * frame[y1:y2, x1:x2, c])
except:
pass
return frame