-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscriptCalibrationAmenityInformal.m
146 lines (119 loc) · 6.03 KB
/
scriptCalibrationAmenityInformal.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
% Copyright or ?? or Copr. Ecole des Ponts ParisTech 2012
% contributor(s) : Vincent Viguie
%
%
% This software is a computer program whose purpose is to analyze city growth over time.
%
% This software is governed by the CeCILL license under French law and
% abiding by the rules of distribution of free software. You can use,
% modify and/ or redistribute the software under the terms of the CeCILL
% license as circulated by CEA, CNRS and INRIA at the following URL
% "http://www.cecill.info".
%
% As a counterpart to the access to the source code and rights to copy,
% modify and redistribute granted by the license, users are provided only
% with a limited warranty and the software's author, the holder of the
% economic rights, and the successive licensors have only limited
% liability.
%
% In this respect, the user's attention is drawn to the risks associated
% with loading, using, modifying and/or developing or reproducing the
% software by the user in light of its specific status of free software,
% that may mean that it is complicated to manipulate, and that also
% therefore means that it is reserved for developers and experienced
% professionals having in-depth computer knowledge. Users are therefore
% encouraged to load and test the software's suitability as regards their
% requirements in conditions enabling the security of their systems and/or
% data to be ensured and, more generally, to use and operate it in the
% same conditions as regards security.
%
% The fact that you are presently reading this means that you have had
% knowledge of the CeCILL license and that you accept its terms.
%
clear;
clc;
close all;
tic();
disp ('**************** NEDUM-Cape-Town - Polycentric Version - Formal and Informal housing ****************');
global slash
slash = '/'; % To be changed when on Mac or Windows
% Load function addresses
pathProgram;
% Load data address
pathData;
%% Parameters and options
%%% Import Parameters %%%
param = ChoiceParameters;
%%% Set options for the simulation %%%
option.polycentric = 1;
option.futureConstructionRDP = 1;
option.logit = 1;
option.taxOutUrbanEdge = 0;
option.doubleStoreyShacks = 0;
option.urbanEdge = 0; %1 means we keep the urban edge
option.ownInitializationSolver = 0;
option.adjustHousingSupply = 1;
option.loadTransportTime = 1;
option.sortEmploymentCenters = 1;
%%% Parameters for the scenario %%%
param.yearUrbanEdge = 2016; % in case option.urban_edge = 0, the year the constraint is removed
param.taxOutUrbanEdge = 10000;
param.coeffDoubleStorey = 0.02; % Random for now
%%% Years for the simulation %%%
param.yearBegin = 2011;
t = 0:1:6; % to go up to 2017
%%% Import inputs for the simulation %%%
ImportInputsData;
%%% Calibrated parameters %%%
load('./0. Precalculated inputs/calibratedAmenities.mat')
land.amenities = amenities ./ mean(amenities);
load('./0. Precalculated inputs/calibratedUtility_beta.mat')
load('./0. Precalculated inputs/calibratedUtility_q0.mat')
param.beta = calibratedUtility_beta;
param.alpha = 1 - param.beta;
param.basic_q = calibratedUtility_q0;
load('./0. Precalculated inputs/calibratedHousing_b.mat')
load('./0. Precalculated inputs/calibratedHousing_lambda.mat')
param.coeff_b = coeff_b;
param.coeff_a = 1 - param.coeff_b;
param.coeff_grandA = coeff_lambda;
load('./0. Precalculated inputs/calibratedParamAmenities.mat')
param.amenityBackyard = calibratedParamAmenities(1);
param.amenitySettlement = calibratedParamAmenities(2);
%%% Define minimum lot-size %%%
param.miniLotSize = min(data.spDwellingSize((data.spInformalSettlement + data.spInformalBackyard)./data.spTotalDwellings < 0.1));
% We transform the rent per unit of land to a rent per unit of floor area:
param.agriculturalRent2011 = param.agriculturalRent2011.^(param.coeff_a) .* (param.depreciationRate + InterpolateInterestRateEvolution(macro, 0)) ./ (param.coeff_grandA .* param.coeff_b .^ param.coeff_b);
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Initial state
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% List of parameters
listAmenityBackyard = 0.6:0.032:0.9; % listAmenityBackyard = 0.5:0.033:0.8;
listAmenitySettlement = 0.6:0.034:0.9; % listAmenitySettlement = 0.5:0.033:0.8;
listParam = combvec(listAmenityBackyard, listAmenitySettlement);
housingTypeTotal = zeros(4, size(listParam, 2));
Uo_init = poly.averageIncome(1,:) .* 0.2;
option.ownInitializationSolver = 1;
param.maxIteration = 2 * param.maxIteration;
sumHousingTypes = @(initialState) sum(initialState.householdsHousingType, 2);
for i = 1:size(listParam, 2)
param.amenityBackyard = listParam(1,i);
param.amenitySettlement = listParam(2,i);
initialState = RunEquilibriumSolverNEDUM(t(1),trans,option,land,grid,macro,param,poly,Uo_init,param.housing_in);
statInitialState = ComputeStatInitialState(trans,land,grid,macro,param,option,initialState,poly,t(1));
housingTypeTotal(:,i) = sumHousingTypes(initialState);
Uo_init = initialState.utility;
end
save 'calibration housing types'
disp('*** End of simulations for chosen parameters ***');
%% Test
housingTypeData = [sum(data.gridFormal(data.limitCapeTown)) - sum(initialState.householdsHousingType(4,:)); sum(data.gridInformalBackyard(data.limitCapeTown)); ...
sum(data.gridInformalSettlement(data.limitCapeTown)); sum(data.gridFormal(data.limitCapeTown) + data.gridInformalBackyard(data.limitCapeTown) + data.gridInformalSettlement(data.limitCapeTown))];
distanceShare = abs(housingTypeTotal(1:3,:)./sum(housingTypeTotal) - repmat(housingTypeData(1:3)./housingTypeData(4), 1, size(housingTypeTotal,2)));
% scatter(list_param(2,:), distance_share(3,:), 200, list_param(1,:), '.')
distanceShareScore = distanceShare(2,:) + distanceShare(3,:);
[~, which] = min(distanceShareScore);
calibratedParamAmenities = listParam(:,which);
save('./0. Precalculated inputs/calibratedParamAmenities.mat', 'calibratedParamAmenities')
disp('*** Amenity parameters saved ***');