-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path_main_functions.R
683 lines (610 loc) · 23.8 KB
/
_main_functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
# -------------------------------------------------- #
# Climate Risk Profiles -- Main functions
# A. Esquivel, C. Saavedra, H. Achicanoy & J. Ramirez-Villegas
# Alliance Bioversity-CIAT, 2021
# -------------------------------------------------- #
# Windows parallelization functions
clusterExport <- local({
gets <- function(n, v) { assign(n, v, envir = .GlobalEnv); NULL }
function(cl, list, envir = .GlobalEnv) {
## do this with only one clusterCall--loop on slaves?
for (name in list) {
clusterCall(cl, gets, name, get(name, envir = envir))
}
}
})
createCluster <- function(noCores, logfile = "/dev/null", export = NULL, lib = NULL) {
require(doSNOW)
cl <- makeCluster(noCores, type = "SOCK", outfile = logfile)
if(!is.null(export)) clusterExport(cl, export)
if(!is.null(lib)) {
plyr::l_ply(lib, function(dum) {
clusterExport(cl, "dum", envir = environment())
clusterEvalQ(cl, library(dum, character.only = TRUE))
})
}
registerDoSNOW(cl)
return(cl)
}
# Generate chunks
chunk <- function(vect, size){
split(vect, ceiling(seq_along(vect)/size))
}
# Agro-climatic indices
rsum.lapply <- function(x, n=3L) # Calculate rollin sum
{
lapply(1:(length(x)-n+1), function(i)
{
# Sum for n consecutive days
z <- sum(x[i:(i+n-1)])
# Indices used to calculate the sum
seq.sum <- as.numeric(i:(i+n-1))
# List with SUM and INDICES
results <- list(z, seq.sum)
return(results)
})
}
cumulative.r.sum <- function(results){ unlist(lapply(results, function(x){z <- x[[1]]; return(z)})) } # Extract the SUM
is.leapyear <- function(year){ return(((year %% 4 == 0) & (year %% 100 != 0)) | (year %% 400 == 0)) } # Function to identify leap years
## NDD. Average number of dry days
calc_ndd <- function(PREC, p_thresh = 1){
dry_days <- sum(PREC < p_thresh, na.rm = T)
return(dry_days)
}
calc_nddCMP <- compiler::cmpfun(calc_ndd)
## CDD. Maximum number of consecutive dry days
calc_cdd <- function(PREC, p_thresh=1){
runs <- rle(PREC < p_thresh)
cons_days <- max(runs$lengths[runs$values==1], na.rm=TRUE)
return(cons_days)
}
calc_cddCMP <- compiler::cmpfun(calc_cdd)
## CDD. Maximum number of consecutive days with TMAX above t_thresh
calc_cdd_temp <- function(TMAX, t_thresh=37){
runs <- rle(TMAX > t_thresh)
cons_days <- max(runs$lengths[runs$values==1], na.rm=TRUE)
return(cons_days)
}
calc_cdd_tempCMP <- compiler::cmpfun(calc_cdd_temp)
## P5D. Maximum 5-day running average precipitation
calc_p5d <- function(PREC){
runAvg <- caTools::runmean(PREC, k=5, endrule='NA')
runAvg <- max(runAvg, na.rm=TRUE)
return(runAvg)
}
calc_p5dCMP <- compiler::cmpfun(calc_p5d)
## NT35. Number of days with max. temperature above 35?C
calc_hts <- function(tmax, t_thresh=35) {
hts <- length(which(tmax >= t_thresh))
return(hts)
}
calc_htsCMP <- compiler::cmpfun(calc_hts)
## P95. 95th percentile of daily precipitation
calc_p95 <- function(PREC){
quantile(PREC, probs = .95, na.rm = T)
}
calc_p95CMP <- compiler::cmpfun(calc_p95)
### Mean temperature ***
tmean <- function(tmax, tmin, season_ini=1, season_end=365){
tavg <- lapply(1:nrow(tmax), function(i){
tavg <- (tmax[i, season_ini:season_end]+tmin[i, season_ini:season_end])/2
})
tavg <- do.call(rbind, tavg)
return(tavg)
}
tmeanCMP <- compiler::cmpfun(tmean)
### Total prec at year ***
calc_totprec <- function(prec){
totprec <- sum(prec, na.rm=T)
return(totprec)
}
calc_totprecCMP <- compiler::cmpfun(calc_totprec)
### Maximum number of consecutive dry days, prec < 1 mm
dr_stress <- function(PREC, p_thresh=1){
runs <- rle(PREC < p_thresh)
cons_days <- max(runs$lengths[runs$values==1], na.rm=TRUE)
return(cons_days)
}
dr_stressCMP <- compiler::cmpfun(dr_stress)
### number of prec days
calc_precdays <- function(x, season_ini=1, season_end=365, p_thresh=0.1) {
precdays <- length(which(x$prec[season_ini:season_end] > p_thresh))
return(precdays)
}
### maximum consecutive dry days
calc_max_cdd <- function(x, year=2000, season_ini=1, season_end=365, p_thresh=0.1) {
cdd <- 0; cdd_seq <- c()
for (i_x in season_ini:season_end) {
if (x$prec[i_x] < p_thresh) {
cdd <- cdd+1
} else {
cdd_seq <- c(cdd_seq, cdd)
cdd <- 0
}
}
max_cdd <- max(cdd_seq)
return(max_cdd)
}
### mean consecutive dry days
calc_mean_cdd <- function(x, season_ini=1, season_end=365, p_thresh=0.1) {
cdd <- 0; cdd_seq <- c()
for (i_x in season_ini:season_end) {
if (x$prec[i_x] < p_thresh) {
cdd <- cdd+1
} else {
cdd_seq <- c(cdd_seq, cdd)
cdd <- 0
}
}
mean_cdd <- mean(cdd_seq[which(cdd_seq > 0)],na.rm=T)
return(mean_cdd)
}
### number of prec days
calc_txxdays <- function(x, season_ini=1, season_end=365, t_thresh=30) {
x$TDAY <- x$tmax*0.75 + x$tmin*0.25 #day temperature
txxdays <- length(which(x$TDAY[season_ini:season_end] > t_thresh))
return(txxdays)
}
### number of prec days
calc_tnndays <- function(x, season_ini=1, season_end=365, t_thresh=10) {
x$TDAY <- x$tmax*0.75 + x$tmin*0.25 #day temperature
tnndays <- length(which(x$TDAY[season_ini:season_end] < t_thresh))
return(tnndays)
}
# ### calculate soilcap in mm (old version)
# soilcap_calc <- function(x, minval, maxval) {
# rdepth <- max(c(x[4],minval)) #cross check
# rdepth <- min(c(rdepth,maxval)) #cross-check
# wc_df <- data.frame(depth=c(2.5,10,22.5,45,80,150),wc=(x[5:10])*.01)
# if (!rdepth %in% wc_df$depth) {
# wc_df1 <- wc_df[which(wc_df$depth < rdepth),]
# wc_df2 <- wc_df[which(wc_df$depth > rdepth),]
# y1 <- wc_df1$wc[nrow(wc_df1)]; y2 <- wc_df2$wc[1]
# x1 <- wc_df1$depth[nrow(wc_df1)]; x2 <- wc_df2$depth[1]
# ya <- (rdepth-x1) / (x2-x1) * (y2-y1) + y1
# wc_df <- rbind(wc_df1,data.frame(depth=rdepth,wc=ya),wc_df2)
# }
# wc_df <- wc_df[which(wc_df$depth <= rdepth),]
# wc_df$soilthick <- wc_df$depth - c(0,wc_df$depth[1:(nrow(wc_df)-1)])
# wc_df$soilcap <- wc_df$soilthick * wc_df$wc
# soilcp <- sum(wc_df$soilcap) * 10 #in mm
# return(soilcp)
# }
soilcap_calc <- function(x, y, rdepth=60, minval, maxval) {
if (length(x) != length(y)) {stop("length of x and y must be the same")}
rdepth <- max(c(rdepth,minval)) #cross check
rdepth <- min(c(rdepth,maxval)) #cross-check
wc_df <- data.frame(depth=y,wc=x)
if (!rdepth %in% wc_df$depth) {
wc_df1 <- wc_df[which(wc_df$depth < rdepth),]
wc_df2 <- wc_df[which(wc_df$depth > rdepth),]
y1 <- wc_df1$wc[nrow(wc_df1)]; y2 <- wc_df2$wc[1]
x1 <- wc_df1$depth[nrow(wc_df1)]; x2 <- wc_df2$depth[1]
ya <- (rdepth-x1) / (x2-x1) * (y2-y1) + y1
wc_df <- rbind(wc_df1,data.frame(depth=rdepth,wc=ya),wc_df2)
}
wc_df <- wc_df[which(wc_df$depth <= rdepth),]
wc_df$soilthick <- wc_df$depth - c(0,wc_df$depth[1:(nrow(wc_df)-1)])
wc_df$soilcap <- wc_df$soilthick * wc_df$wc
soilcp <- sum(wc_df$soilcap) * 10 #in mm
return(soilcp)
}
# potential evapotranspiration
peest <- function(srad,tmin,tmax) {
#constants
albedo <- 0.2
vpd_cte <- 0.7
#soil heat flux parameters
a_eslope=611.2
b_eslope=17.67
c_eslope=243.5
#input parameters
tmean <- (tmin+tmax)/2
#net radiation
rn = (1-albedo) * srad
#soil heat flux
eslope=a_eslope*b_eslope*c_eslope/(tmean+c_eslope)^2*exp(b_eslope*tmean/(tmean+c_eslope))
#estimate vpd
esat_min=0.61120*exp((17.67*tmin)/(tmin+243.5))
esat_max=0.61120*exp((17.67*tmax)/(tmax+243.5))
vpd=vpd_cte*(esat_max-esat_min) #kPa
#Priestley-Taylor
pt_const=1.26
pt_fact=1
vpd_ref=1
psycho=62
rho_w=997
rlat_ht=2.26E6
pt_coef=pt_fact*pt_const
pt_coef = 1 + (pt_coef-1) * vpd / vpd_ref
#*10^6? To convert fluxes MJ to J
#rlat_ht? Latent heat flux to water flux
#100/rho_w? Kg/m^2 to cm
et_max=(pt_coef * rn * eslope/(eslope+psycho) * 10^6 / rlat_ht * 100/rho_w)*10 #in mm
return(et_max)
}
#the two functions below estimate the ea/ep
#based on Jones (1987)
#ea/ep: actual to potential evapotranspiration ratio
eabyep_calc <- function(soilcp=100,soilsat=100,cropfc=1,avail=50,rain,evap) {
avail <- min(c(avail,soilcp))
eratio <- eabyep(soilcp,avail)
demand <- eratio*cropfc*evap
result <- avail + rain - demand
logging <- result - soilcp
logging <- max(c(logging,0))
logging <- min(c(soilsat,logging))
runoff <- result - (logging+soilcp)
avail <- min(c(soilcp,result))
avail <- max(c(avail,0))
runoff <- max(c(runoff,0))
out <- data.frame(AVAIL=avail,DEMAND=demand,ERATIO=eratio,RAIN=rain,LOGGING=logging,RUNOFF=runoff)
return(out)
}
#ea/ep function
eabyep <- function(soilcp,avail) {
percwt <- min(c(100,avail/soilcp*100))
percwt <- max(c(1,percwt))
eratio <- min(c(percwt/(97-3.868*sqrt(soilcp)),1))
return(eratio)
}
# # wrapper to calculate the water balance modeling variables (old)
# watbal_wrapper <- function(out_all, soilcp){
# out_all$Etmax <- out_all$AVAIL <- out_all$ERATIO <- out_all$RUNOFF <- out_all$DEMAND <- out_all$CUM_prec <- NA
# for (d in 1:nrow(out_all)) {
# out_all$Etmax[d] <- peest(out_all$srad[d], out_all$tmin[d], out_all$tmax[d])
#
# if (d==1) {
# out_all$CUM_prec[d] <- out_all$prec[d]
# sfact <- eabyep_calc(soilcp=soilcp, cropfc=1, avail=0, prec=out_all$prec[d], evap=out_all$Etmax[d])
# out_all$AVAIL[d] <- sfact$AVAIL
# out_all$ERATIO[d] <- sfact$ERATIO
# out_all$RUNOFF[d] <- sfact$RUNOFF
# out_all$DEMAND[d] <- sfact$DEMAND
#
# } else {
# out_all$CUM_prec[d] <- out_all$CUM_prec[d-1] + out_all$prec[d]
# sfact <- eabyep_calc(soilcp=soilcp, cropfc=1, avail=out_all$AVAIL[d-1], prec=out_all$prec[d], evap=out_all$Etmax[d])
# out_all$AVAIL[d] <- sfact$AVAIL
# out_all$ERATIO[d] <- sfact$ERATIO
# out_all$RUNOFF[d] <- sfact$RUNOFF
# out_all$DEMAND[d] <- sfact$DEMAND
# }
# }
# return(out_all)
# }
#wrapper to calculate the water balance modeling variables
watbal_wrapper <- function(out_all, soilcp, soilsat) {
out_all$ETMAX <- out_all$AVAIL <- out_all$ERATIO <- out_all$LOGGING <- out_all$RUNOFF <- out_all$DEMAND <- out_all$CUM_RAIN <- NA
for (d in 1:nrow(out_all)) {
out_all$ETMAX[d] <- peest(out_all$srad[d],out_all$tmin[d],out_all$tmax[d])
if (d==1) {
out_all$CUM_RAIN[d] <- out_all$prec[d]
sfact <- eabyep_calc(soilcp=soilcp,soilsat=soilsat,cropfc=1,avail=0,rain=out_all$prec[d],evap=out_all$ETMAX[d])
out_all$AVAIL[d] <- sfact$AVAIL
out_all$ERATIO[d] <- sfact$ERATIO
out_all$LOGGING[d] <- sfact$LOGGING
out_all$RUNOFF[d] <- sfact$RUNOFF
out_all$DEMAND[d] <- sfact$DEMAND
} else {
out_all$CUM_RAIN[d] <- out_all$CUM_RAIN[d-1] + out_all$prec[d]
sfact <- eabyep_calc(soilcp=soilcp,soilsat=soilsat,cropfc=1,avail=out_all$AVAIL[d-1],rain=out_all$prec[d],evap=out_all$ETMAX[d])
out_all$AVAIL[d] <- sfact$AVAIL
out_all$ERATIO[d] <- sfact$ERATIO
out_all$LOGGING[d] <- sfact$LOGGING
out_all$RUNOFF[d] <- sfact$RUNOFF
out_all$DEMAND[d] <- sfact$DEMAND
}
}
return(out_all)
}
# calculate number of water stress days
calc_wsdays <- function(ERATIO, season_ini=1, season_end=365, e_thresh=0.3) {
wsdays <- length(which(ERATIO[season_ini:season_end] < e_thresh))
return(wsdays)
}
calc_wsdaysCMP <- compiler::cmpfun(calc_wsdays)
### HTS1, HTS2, LETHAL: heat stress using tmax ***
calc_hts <- function(tmax, season_ini=1, season_end=365, t_thresh=35) {
hts <- length(which(tmax[season_ini:season_end] >= t_thresh))
return(hts)
}
calc_htsCMP <- compiler::cmpfun(calc_hts)
### CD: crop duration, if Tmean > (22, 23, 24) then CD=T-23, else CD=0 ***
calc_cdur <- function(TMEAN, season_ini=1, season_end=365, t_thresh=35){
tmean <- mean(TMEAN[season_ini:season_end], na.rm=T)
if (tmean > t_thresh) {cdur <- tmean - t_thresh} else {cdur <- 0}
return(cdur)
}
calc_cdurCMP <- compiler::cmpfun(calc_cdur)
# DS2: max number of consecutive days Ea/Ep < 0.4, 0.5, 0.6
calc_cons_wsdays <- function(x, season_ini=1, season_end=365, e_thresh=0.4) {
cdd <- 0; cdd_seq <- c()
for (i_x in season_ini:season_end) {
if (x$ERATIO[i_x] < e_thresh) {
cdd <- cdd+1
} else {
cdd_seq <- c(cdd_seq, cdd)
cdd <- 0
}
}
cdd_seq <- c(cdd_seq, cdd)
max_cdd <- max(cdd_seq)
return(max_cdd)
}
# ATT: accum thermal time using capped top, Tb=7,8,9, To=30,32.5,35
calc_att <- function(x, season_ini=1, season_end=365, tb=10, to=20) {
x$TMEAN <- (x$tmin + x$tmax) * 0.5
att <- sapply(x$TMEAN[season_ini:season_end], ttfun, tb, to)
att <- sum(att,na.rm=T)
return(att)
}
# function to calc tt
ttfun <- function(tmean, tb, to) {
if (tmean<to & tmean>tb) {
teff <- tmean-tb
} else if (tmean>=to) {
teff <- to-tb
} else if (tmean<=tb) {
teff <- 0
}
return(teff)
}
# DLOSS: duration loss (difference between No. days to reach ATT_baseline in future vs. baseline)
calc_dloss <- function(x, season_ini, dur_b=110, att_b=5000, tb=10, to=20) {
x$TMEAN <- (x$tmin + x$tmax) * 0.5
att <- sapply(x$TMEAN[season_ini:(nrow(x))], ttfun, tb, to)
att <- cumsum(att)
estdur <- length(att[which(att < att_b)])
dloss <- dur_b - estdur
return(dloss)
}
# WES: wet early season if period between sowing and anthesis is above field cap. >= 50 % time
# i.e. frequency of days if RUNOFF > 1
calc_wes <- function(x, season_ini, season_end, r_thresh=1) {
wes <- length(which(x$RUNOFF[season_ini:season_end] > r_thresh))
return(wes)
}
# BADSOW: no. days in sowing window +-15 centered at sdate with 0.05*SOILCP < AVAIL < 0.9*SOILCP
# if this is < 3 then crop runs into trouble
calc_badsow <- function(x, season_ini, soilcp) {
sow_i <- season_ini - 15; sow_f <- season_ini + 15
if (sow_i < 1) {sow_i <- 1}; if (sow_f > 365) {sow_f <- 365}
x <- x[sow_i:sow_f,]
badsow <- length(which(x$AVAIL > (0.05*soilcp) & x$AVAIL < (0.9*soilcp)))
return(badsow)
}
# BADHAR: no. days in harvest window (+25 after hdate) with AVAIL < 0.85*SOILCP
# if this is < 3 then crop runs into trouble
calc_badhar <- function(x, season_end, soilcp) {
har_i <- season_end
har_f <- har_i + 25; if (har_f > 365) {har_f <- 365}
x <- x[har_i:har_f,]
badhar <- length(which(x$AVAIL < (0.85*soilcp)))
return(badhar)
}
# NWLD: Number of days during the growing season with waterlogging in the soil
calc_NWLD <- function(LOGG = df$LOGGING){
NWLD <- sum(LOGG > 0, na.rm = T)
return(NWLD)
}
calc_NWLDMP <- compiler::cmpfun(calc_NWLD)
# NWLD50: Number of days during the growing season with 50% of waterlogging in the soil
calc_NWLD50 <- function(LOGG = df$LOGGING, sat = soilst){
NWLD50 <- sum(LOGG > (sat*0.5), na.rm = T)
return(NWLD50)
}
calc_NWLD50MP <- compiler::cmpfun(calc_NWLD50)
# NWLD90: Number of days during the growing season with 90% of waterlogging in the soil
calc_NWLD90 <- function(LOGG = df$LOGGING, sat = soilst){
NWLD90 <- sum(LOGG >= sat, na.rm = T)
return(NWLD90)
}
calc_NWLD90MP <- compiler::cmpfun(calc_NWLD90)
# cNWLD Maximum number of consecutive days during the growing season with waterlogging in the soil
calc_cNWLD <- function(LOGG = df$LOGGING){
runs <- rle(LOGG > 0)
cNWLD <- max(runs$lengths[runs$values==1], na.rm = TRUE)
return(cNWLD)
}
calc_cNWLDMP <- compiler::cmpfun(calc_cNWLD)
# cNWLD50 Maximum number of consecutive days during the growing season with 50% of waterlogging in the soil
calc_cNWLD50 <- function(LOGG = df$LOGGING, sat = soilst){
runs <- rle(LOGG > (sat*0.5))
cNWLD50 <- max(runs$lengths[runs$values==1], na.rm = TRUE)
return(cNWLD50)
}
calc_cNWLD50MP <- compiler::cmpfun(calc_cNWLD50)
# cNWLD90 Maximum number of consecutive days during the growing season with 90% of waterlogging in the soil
calc_cNWLD90 <- function(LOGG = df$LOGGING, sat = soilst){
runs <- rle(LOGG >= sat)
cNWLD90 <- max(runs$lengths[runs$values==1], na.rm = TRUE)
return(cNWLD90)
}
calc_cNWLD90MP <- compiler::cmpfun(calc_cNWLD90)
# Aridity index
calc_tai <- function(clm = tbl){
OSys <<- Sys.info()[1]
root <<- switch(OSys,
'Linux' = '/dapadfs/workspace_cluster_14/WFP_ClimateRiskPr',
'Windows' = '//CATALOGUE/Workspace14/WFP_ClimateRiskPr')
# Load packages
if(!require(pacman)){install.packages('pacman'); library(pacman)} else {suppressMessages(library(pacman))}
suppressMessages(pacman::p_load(fst,envirem,gtools,tidyverse,raster))
# Load CHIRPS template
tmp <- raster::raster(paste0(root,"/1.Data/chirps-v2.0.2020.01.01.tif"))
# Transform table to raster study area
r <- raster::rasterFromXYZ(xyz = clm[,c('x','y')] %>% unique %>% dplyr::mutate(vals = 1),
res = raster::res(tmp),
crs = raster::crs(tmp))
# ET SRAD
srf <- list.dirs(paste0(root,'/1.Data/climate/ET_SolRad'), full.names = T, recursive = F)
srf <- srf[-length(srf)]
srf <- srf %>% gtools::mixedsort()
srd <- srf %>% raster::stack()
srd <- srd %>%
raster::crop(., raster::extent(r)) %>%
raster::resample(x = ., y = r)
srd <- srd %>% raster::mask(., mask = r)
names(srd) <- c(paste0('SRAD_0',1:9),paste0('SRAD_', 10:12))
# Transform climate variables to the corresponding units
clm$rnge <- abs(clm$tmax - clm$tmin)
# Calc monthly summaries per year
summ <- clm %>%
dplyr::mutate(Year = lubridate::year(clm$date),
Month = lubridate::month(clm$date)) %>%
dplyr::group_by(id, x, y, Year, Month) %>%
dplyr::summarise(tmean = mean(tmean, na.rm = T),
rnge = mean(rnge, na.rm = T),
prec = sum(prec, na.rm = T))
# Obtain yearly tables
yr_summ <- summ %>%
dplyr::group_by(Year) %>%
dplyr::group_split(Year)
# Assign precipitation names in envirem environment
envirem::assignNames(solrad='SRAD_##', tmean = 'TMEAN_##', precip = 'PREC_##')
# Calculate Aridity index over time
TAI_over_time <- yr_summ %>%
purrr::map(.f = function(df_yr){
mnths <- df_yr %>%
dplyr::group_by(Month) %>%
dplyr::group_split(Month) %>%
purrr::map(.f = function(db){
vars <- c('tmean','prec','rnge')
tst <- lapply(vars, function(v){
r <- raster::rasterFromXYZ(xyz = db[,c('x','y',v)],
res = raster::res(tmp),
crs = raster::crs(tmp))
return(r)
})
return(tst)
})
TMEAN <- mnths %>% purrr::map(1) %>% raster::stack()
PREC <- mnths %>% purrr::map(2) %>% raster::stack()
TRNG <- mnths %>% purrr::map(3) %>% raster::stack()
names(TMEAN) <- c(paste0('TMEAN_0',1:9),paste0('TMEAN_', 10:12))
names(PREC) <- c(paste0('PREC_0',1:9),paste0('PREC_', 10:12))
names(TRNG) <- c(paste0('TRNG_0',1:9),paste0('TRNG_', 10:12))
PET <- envirem::monthlyPET(TMEAN, srd, TRNG) %>% raster::stack()
names(PET) <- c(paste0('PET_0',1:9), paste0('PET_', 10:12))
TAI <- envirem::aridityIndexThornthwaite(PREC, PET)
return(TAI)
})
# Group results for all years in one stack
TAI <- TAI_over_time %>% raster::stack()
names(TAI) <- paste0('TAI_',range(summ$Year)[1]:range(summ$Year)[2])
df <- TAI %>% raster::rasterToPoints() %>% as.data.frame()
df$id <- raster::cellFromXY(tmp, df[,c('x','y')])
df <- df %>% dplyr::select(id,x,y,dplyr::everything(.))
df <- df %>%
tidyr::pivot_longer(cols = paste0('TAI_',range(summ$Year)[1]):paste0('TAI_',range(summ$Year)[2]), names_to = 'Year', values_to = 'TAI') %>%
dplyr::mutate(Year = gsub('TAI_','',Year) %>% as.numeric)
return(df)
}
calc_taiMP <- compiler::cmpfun(calc_tai)
# Annual/Season total precipitation (ATR)
calc_atr <- function(PREC){
pre <- sum(PREC, na.rm = T)
return(pre)
}
calc_atrMP <- compiler::cmpfun(calc_atr)
# Annual/Season mean temperature --- AMT
calc_amt <- function(TMEAN){
tavg <- mean(TMEAN, na.rm = T)
return(tavg)
}
calc_amtMP <- compiler::cmpfun(calc_amt)
# Standardized precipitation index - SPI
calc_spi <- function(DP){
sp <- SPEI::spi(data = DP, scale = 4, na.rm=T)
return(sp)
}
calc_spiMP <- compiler::cmpfun(calc_spi)
# The SHI is computed as the number of days with maximum temperatures ??? 29?C
# and relative humidity is greater than 50%.
calc_SHI <- function(tmax, RH){
SHI <- ifelse(tmax >= 29 & RH > 50, 1, 0)
SHI <- sum(SHI)
return(SHI)
}
calc_SHIMP <- compiler::cmpfun(calc_SHI)
# Daily pig heat stress index (HSI)
# dplyr::case_when(0 ~ normal, 1 ~ alert, 2 ~ danger, 3 ~ emergency)
calc_HSI <- function(tmax, RH){
HSI <- tibble::tibble( HSI = case_when( tmax < 24 ~ 0,
tmax <= 24 & RH <= 70 ~ 0,
tmax <= 25 & RH <= 40 ~ 0,
tmax <= 24 & RH > 70 ~ 1,
tmax <= 25 & RH > 40 ~ 1,
tmax <= 26 & RH <= 70 ~ 1,
tmax <= 27 & RH <= 40 ~ 1, #
tmax <= 26 & RH > 70 ~ 2,
tmax <= 27 & RH >= 40 & RH < 85 ~ 2, #
tmax <= 28 & RH < 85 ~ 2,
tmax <= 29 & RH < 60 ~ 2,
tmax <= 30 & RH < 40 ~ 2,
tmax <= 27 & RH >= 85 ~ 3,
tmax <= 28 & RH >= 85 ~ 3,
tmax <= 29 & RH >= 60 ~ 3,
tmax <= 30 & RH >= 40 ~ 3,
tmax > 30 ~ 3,
TRUE ~ NA_real_) )
if(is.na(sum(HSI))){
HSI <- tibble(HSI_0 = NA_real_, HSI_1 = NA_real_, HSI_2 = NA_real_, HSI_3 = NA_real_)
} else {
HSI <- HSI %>%
dplyr::count(HSI) %>%
dplyr::mutate(n = n / sum(n),
HSI = paste0('HSI_', HSI)) %>%
tidyr::pivot_wider(names_from = HSI, values_from = n)
}
HSI_names <- HSI %>% names()
if(sum(HSI_names == 'HSI_0') < 1){HSI <- bind_cols( tibble(HSI_0 = NA_real_), HSI)}
if(sum(HSI_names == 'HSI_1') < 1){HSI <- bind_cols( tibble(HSI_1 = NA_real_), HSI)}
if(sum(HSI_names == 'HSI_2') < 1){HSI <- bind_cols( tibble(HSI_2 = NA_real_), HSI)}
if(sum(HSI_names == 'HSI_3') < 1){HSI <- bind_cols( tibble(HSI_3 = NA_real_), HSI)}
HSI <- dplyr::select(HSI, HSI_0, HSI_1, HSI_2, HSI_3)
return(HSI)
}
calc_HSIMP <- compiler::cmpfun(calc_HSI)
# Daily thermal humidity index (THI)
calc_THI <- function(tmax, RH){
THI <- tibble::tibble(THI1 = (1.8 * tmax + 32) - ((0.55 - 0.0055 * RH) * (1.8 * tmax - 26.8))) %>%
dplyr::mutate(THI = dplyr::case_when(THI1 < 72 ~ 0, # no stress.
THI1 >= 72 & THI1 < 79 ~ 1, # mild
THI1 >= 79 & THI1 < 89 ~ 2, # moderate.
THI1 >= 89 ~ 3, # severe.
TRUE ~ THI1) ) %>%
dplyr::count(THI)
if(nrow(THI) < 4){
less <- (0:3)[!(0:3 %in% THI$THI)]
THI <- dplyr::add_row(THI, tibble(THI = less, n = 0)) %>% arrange(THI)
} else {
THI <- THI
}
THI <- THI %>% dplyr::filter(!is.na(THI)) %>%
dplyr::mutate(n = ifelse( n > 0, n/sum(n), 0), THI = paste0('THI_', THI)) %>%
tidyr::pivot_wider(names_from = THI, values_from = n)
if(sum(slice(THI, 1) ) == 0){
THI <- THI %>%
dplyr::mutate_all(.funs = function(x){
ifelse(x == 0, NA_real_, x)
})}
THI_names <- THI %>% names()
if(sum(THI_names == 'THI_0') < 1){THI <- bind_cols( tibble(THI_0 = NA_real_), THI)}
if(sum(THI_names == 'THI_1') < 1){THI <- bind_cols( tibble(THI_1 = NA_real_), THI)}
if(sum(THI_names == 'THI_2') < 1){THI <- bind_cols( tibble(THI_2 = NA_real_), THI)}
if(sum(THI_names == 'THI_3') < 1){THI <- bind_cols( tibble(THI_3 = NA_real_), THI)}
THI <- dplyr::select(THI, THI_0, THI_1, THI_2, THI_3)
return(THI)
}
calc_THIMP <- compiler::cmpfun(calc_THI)
## CSDI
calc_csdi <- function(TMIN){
per_10 <- quantile(TMIN, 0.10, na.rm = T)
runs <- rle(TMIN < per_10)
cons_days <- max(runs$lengths[runs$value==1], na.rm=T)
cons_days <- ifelse(cons_days<6,0,cons_days)
return(cons_days)
}
calc_csdiMP <- compiler::cmpfun(calc_csdi)