-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathflags_config.py
235 lines (192 loc) · 9.22 KB
/
flags_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# coding: utf-8
# MIT License
#
# Copyright (c) 2018 Duong Nguyen
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ==============================================================================
"""
Flag configuration.
Adapted from the original script of FIVO.
"""
import os
import tensorflow as tf
import pickle
import math
## Bretagne dataset
# LAT_MIN = 46.5
# LAT_MAX = 50.5
# LON_MIN = -8.0
# LON_MAX = -3.0
# ## Aruba
# LAT_MIN = 11.0
# LAT_MAX = 14.0
# LON_MIN = -71.0
# LON_MAX = -68.0
## Gulf of Mexico
"""
LAT_MIN = 26.5
LAT_MAX = 30.0
LON_MIN = -97.5
LON_MAX = -87
"""
SPEED_MAX = 30.0 # knots
FIG_DPI = 150
# Shared flags.
tf.app.flags.DEFINE_string("mode", "train",
"The mode of the binary. Must be 'train'"
"'save_logprob','local_logprob'"
"'contrario_detection','visualisation'"
"'traj_reconstruction' or 'traj_speed'.")
tf.app.flags.DEFINE_string("bound", "elbo",
"The bound to optimize. Can be 'elbo', or 'fivo'.")
tf.app.flags.DEFINE_integer("latent_size", 64,
"The size of the latent state of the model.")
tf.app.flags.DEFINE_string("log_dir", "./chkpt",
"The directory to keep checkpoints and summaries in.")
tf.app.flags.DEFINE_integer("batch_size", 32,
"Batch size.")
tf.app.flags.DEFINE_integer("num_samples", 16,
"The number of samples (or particles) for multisample "
"algorithms.")
tf.app.flags.DEFINE_float("ll_thresh", -17.47,
"Log likelihood for the anomaly detection.")
# Dataset flags
tf.app.flags.DEFINE_string("dataset_dir", "./data",
"Dataset directory")
tf.app.flags.DEFINE_string("trainingset_name", "ct_aruba_2019/ct_aruba_2019_train.pkl",
"Path to load the trainingset from.")
tf.app.flags.DEFINE_string("testset_name", "ct_aruba_2019/ct_aruba_2019_test.pkl",
"Path to load the testset from.")
tf.app.flags.DEFINE_string("split", "train",
"Split to evaluate the model on. Can be 'train', 'valid', or 'test'.")
tf.app.flags.DEFINE_boolean("missing_data", False,
"If true, a part of input track will be deleted.")
# Model flags
tf.app.flags.DEFINE_string("model", "vrnn",
"Model choice. Currently only 'vrnn' is supported.")
tf.app.flags.DEFINE_integer("random_seed", None,
"A random seed for seeding the TensorFlow graph.")
# Track flags.
tf.app.flags.DEFINE_float("interval_max", 2*3600,
"Maximum interval between two successive AIS messages (in second).")
tf.app.flags.DEFINE_integer("min_duration", 4,
"Min duration (hour) of a vessel track")
# Four-hot-encoding flags.
tf.app.flags.DEFINE_float("lat_min", 11.0,
"ROI")
tf.app.flags.DEFINE_float("lat_max", 14.0,
"ROI")
tf.app.flags.DEFINE_float("lon_min", -71.0,
"ROI")
tf.app.flags.DEFINE_float("lon_max", -68.0,
"ROI")
tf.app.flags.DEFINE_float("onehot_lat_reso", 0.01,
"Resolution of the lat one-hot vector (degree)")
tf.app.flags.DEFINE_float("onehot_lon_reso", 0.01,
"Resolution of the lat one-hot vector (degree)")
tf.app.flags.DEFINE_float("onehot_sog_reso", 1,
"Resolution of the SOG one-hot vector (knot)")
tf.app.flags.DEFINE_float("onehot_cog_reso", 5,
"Resolution of the COG one-hot vector (degree)")
# A contrario detection flags.
tf.app.flags.DEFINE_float("cell_lat_reso", 0.1,
"Lat resolution of each small cell when applying local thresholding")
tf.app.flags.DEFINE_float("cell_lon_reso", 0.1,
"Lon nesolution of each small cell when applying local thresholding")
tf.app.flags.DEFINE_float("contrario_eps", 1e-9,
"A contrario eps.")
tf.app.flags.DEFINE_boolean("print_log", False,
"If true, print the current state of the program to screen.")
# Training flags.
tf.app.flags.DEFINE_boolean("normalize_by_seq_len", True,
"If true, normalize the loss by the number of timesteps "
"per sequence.")
tf.app.flags.DEFINE_float("learning_rate", 0.0003,
"The learning rate for ADAM.")
tf.app.flags.DEFINE_integer("max_steps", int(80000),
"The number of gradient update steps to train for.")
tf.app.flags.DEFINE_integer("summarize_every", 100,
"The number of steps between summaries.")
# Distributed training flags.
tf.app.flags.DEFINE_string("master", "",
"The BNS name of the TensorFlow master to use.")
tf.app.flags.DEFINE_integer("task", 0,
"Task id of the replica running the training.")
tf.app.flags.DEFINE_integer("ps_tasks", 0,
"Number of tasks in the ps job. If 0 no ps job is used.")
tf.app.flags.DEFINE_boolean("stagger_workers", True,
"If true, bring one worker online every 1000 steps.")
# Fix tf >=1.8.0 flags bug
tf.app.flags.DEFINE_string('f', '', 'kernel')
tf.app.flags.DEFINE_integer("data_dim", 0, "Data dimension")
tf.app.flags.DEFINE_string('log_filename', '', 'Log filename')
tf.app.flags.DEFINE_string('logdir_name', '', 'Log dir name')
tf.app.flags.DEFINE_string('logdir', '', 'Log directory')
tf.app.flags.DEFINE_string('trainingset_path', '', 'Training set path')
tf.app.flags.DEFINE_string('testset_path', '', 'Test set path')
tf.app.flags.DEFINE_integer("onehot_lat_bins", 0,
"Number of equal-width bins of the lat one-hot vector (degree)")
tf.app.flags.DEFINE_integer("onehot_lon_bins", 0,
"Number of equal-width bins the lat one-hot vector (degree)")
tf.app.flags.DEFINE_integer("onehot_sog_bins", 1,
"Number of equal-width bins the SOG one-hot vector (knot)")
tf.app.flags.DEFINE_integer("onehot_cog_bins", 5,
"Number of equal-width bins of the COG one-hot vector (degree)")
tf.app.flags.DEFINE_integer("n_lat_cells", 0,
"Number of lat cells")
tf.app.flags.DEFINE_integer("n_lon_cells", 0,
"Number of lon cells")
FLAGS = tf.app.flags.FLAGS
config = FLAGS
## CONFIGS
#===============================================
## FOUR-HOT VECTOR
config.onehot_lat_bins = math.ceil((config.lat_max-config.lat_min)/config.onehot_lat_reso)
config.onehot_lon_bins = math.ceil((config.lon_max-config.lon_min)/config.onehot_lon_reso)
config.onehot_sog_bins = math.ceil(SPEED_MAX/config.onehot_sog_reso)
config.onehot_cog_bins = math.ceil(360/config.onehot_cog_reso)
config.data_dim = config.onehot_lat_bins + config.onehot_lon_bins\
+ config.onehot_sog_bins + config.onehot_cog_bins # error with data_dimension
## LOCAL THRESHOLDING
config.n_lat_cells = math.ceil((config.lat_max-config.lat_min)/config.cell_lat_reso)
config.n_lon_cells = math.ceil((config.lon_max-config.lon_min)/config.cell_lon_reso)
## PATH
if config.mode == "train":
config.testset_name = config.trainingset_name
elif config.testset_name == "":
config.testset_name = config.trainingset_name.replace("_train","_test")
config.trainingset_path = os.path.join(config.dataset_dir,config.trainingset_name)
config.testset_path = os.path.join(config.dataset_dir,config.testset_name)
print("Training set: " + config.trainingset_path)
print("Test set: " + config.testset_path)
# log
log_dir = config.bound + "-"\
+ os.path.basename(config.trainingset_name)\
+ "-data_dim-" + str(config.data_dim)\
+ "-latent_size-" + str(config.latent_size)\
+ "-batch_size-" + str(config.batch_size)
config.logdir = os.path.join(config.log_dir,log_dir)
if not os.path.exists(config.logdir):
if config.mode == "train":
os.makedirs(config.logdir)
else:
raise ValueError(config.logdir + " doesnt exist")
if config.log_filename == "":
config.log_filename = os.path.basename(config.logdir)