-
Notifications
You must be signed in to change notification settings - Fork 45
/
contrario_utils.py
110 lines (97 loc) · 3.33 KB
/
contrario_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# coding: utf-8
# MIT License
#
# Copyright (c) 2018 Duong Nguyen
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ==============================================================================
"""
A set of utils for the a contrario anomaly detection.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import operator as op
from functools import reduce
MAX_SEQUENCE_LENGTH = 4*6 #4 hours x 6 (time steps = 10 mins)
N_EVENT = 0 # number of event
for ns in range(1,MAX_SEQUENCE_LENGTH+1):
n_ci = MAX_SEQUENCE_LENGTH-ns+1
N_EVENT += n_ci
def nCr(n, r):
"""Function calculates the number of combinations (n choose r)"""
r = min(r, n-r)
numer = reduce(op.mul, range(n, n-r, -1), 1)
denom = reduce(op.mul, range(1, r+1), 1)
return numer//denom
def nonzero_segments(x_):
"""Return list of consecutive nonzeros from x_"""
run = []
result = []
for d_i in range(len(x_)):
if x_[d_i] != 0:
run.append(d_i)
else:
if len(run) != 0:
result.append(run)
run = []
if len(run) != 0:
result.append(run)
run = []
return result
def zero_segments(x_):
"""Return list of consecutive zeros from x_"""
run = []
result = []
for d_i in range(len(x_)):
if x_[d_i] == 0:
run.append(d_i)
else:
if len(run) != 0:
result.append(run)
run = []
if len(run) != 0:
result.append(run)
run = []
return result
def NFA(ns,k):
"""Number of False Alarms"""
B = 0
for t in range(k,ns+1):
B += nCr(ns,t)*(0.1**t)*(0.9**(ns-t))
return 300*B
def contrario_detection(v_A_,epsilon=0.0091):
"""
A contrario detection algorithms
INPUT:
v_A_: abnormal point indicator vector
epsilon: threshold
OUTPUT:
v_anomalies: abnormal segment indicator vector
"""
v_anomalies = np.zeros(len(v_A_))
max_seq_len = min(MAX_SEQUENCE_LENGTH, len(v_A_))
for d_ns in range(max_seq_len,0,-1):
for d_ci in range(max_seq_len+1-d_ns):
v_xi = v_A_[d_ci:d_ci+d_ns]
d_k_xi = int(np.count_nonzero(v_xi))
if NFA(d_ns,d_k_xi)<epsilon:
v_anomalies[d_ci:d_ci+d_ns] = 1
return v_anomalies