diff --git a/peslearn/datagen/configuration_space.py b/peslearn/datagen/configuration_space.py index 2382202..93cb57f 100644 --- a/peslearn/datagen/configuration_space.py +++ b/peslearn/datagen/configuration_space.py @@ -138,7 +138,6 @@ def too_close(self, tooclose=0.1): Check to ensure no interatomic distances are too close. """ start = timeit.default_timer() - print("Removing geometries with atoms that are too close...") nrows_before = len(self.all_geometries.index) df = self.all_geometries.copy() df = df.round(10) diff --git a/peslearn/input_processor.py b/peslearn/input_processor.py index cf22f18..842b04f 100644 --- a/peslearn/input_processor.py +++ b/peslearn/input_processor.py @@ -75,7 +75,7 @@ def get_keywords(self): 'schema_units' : 'angstrom', # 'bohr' 'sort_pes': 'true', #'false' 'training_points': None, # any int - 'tooclose': 0.1, # any int or None + 'tooclose': 0.1, # any int 'use_pips': 'true', #'false' 'validation_points': None # any int } diff --git a/peslearn/ml/kernel_ridge_reg.py b/peslearn/ml/kernel_ridge_reg.py index 214c4cb..6ba74af 100644 --- a/peslearn/ml/kernel_ridge_reg.py +++ b/peslearn/ml/kernel_ridge_reg.py @@ -72,7 +72,7 @@ def set_default_hyperparameters(self): if 'polynomial' in kernels or 'poly' in kernels: print("WARNING: Polynomial type kernels are included in this hyperoptimization.") print("\t It is strongly cautioned against optimizing polynomial kernels in a precomputed kernel along with other types of kernels.") - print("\t See KRR docs for more info.") + print("\t See KRR example docs for more info.") # add link to docs? if 'degree' in precomputed_kernel: degrees = np.asarray(precomputed_kernel['degree'])