forked from coordinated-systems-lab/SCAN-AAAI2021
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data.py
211 lines (199 loc) · 7.44 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from __future__ import print_function
import sys
sys.dont_write_bytecode=True
from tqdm import tqdm
import pandas as pd
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import *
device=torch.device("cuda" if torch.cuda.is_available else "cpu")
agroverse = True
class dataset(Dataset):
def __init__(self,filenames,args):
"""
Dataset for Pedestrian Intent Modeling
"""
super(dataset,self).__init__()
self.files = filenames
self.len = -1
self.samples=[]
self.obs_len=args.obs_len
self.pred_len=args.pred_len
self.augment_data=args.augment_data
self.shift=1
self.use_scene=False
if 'scene' in args.model_type:
self.use_scene=True
self.delim=args.delim
pbar = tqdm(total=len(filenames), bar_format='{l_bar}{bar:50}{r_bar}{bar:-10b}')
for f,filename in enumerate(filenames):
df, means, var=self.load_data(filename)
self.get_sequences(df, filename, means, var)
pbar.set_description(f"Processing {filename} Total Samples: {self.len}")
pbar.update(1)
pbar.close()
def __len__(self):
return self.len
def load_data(self,filename):
columns = ['t','ped id','x','y']
data=pd.read_csv(filename,header=None,delimiter=self.delim,names=columns, dtype={'t': np.float64, 'ped id': np.int32, 'x': np.float64, 'y': np.float64})
data.columns = ['t','ped id','x','y']
data.sort_values(['t'],inplace=True)
data=data[['t','ped id','x','y']]
data['x']=data['x']-data['x'].min()
data['y']=data['y']-data['y'].min()
means = [data['x'].mean(), data['y'].mean()]
var = [data['x'].max(), data['y'].max()]
return data, means, var
def get_sequences(self,df, fname, means, var):
j=0
timestamps=df['t'].unique()
while not (j+self.obs_len+self.pred_len)>len(timestamps):
frameTimestamps=timestamps[j:j+self.obs_len+self.pred_len]
frame=df.loc[df['t'].isin(frameTimestamps)]
if self.use_scene:
sequence, mask, pedestrians, mean, var = self.get_sequence(frame, means, var)
else:
sequence, mask, pedestrians, mean, var = self.get_sequence(frame)
mean, var = torch.tensor(mean).float().unsqueeze(0), torch.tensor(var).float().unsqueeze(0)
if not (pedestrians.data==0).any():
self.len+=1
sample={}
sample['observation']=sequence
sample['mask']=mask
sample['pedestrians']=pedestrians
sample['mean']=mean
sample['var']=var
sample['fname'] = fname
self.samples+=[sample]
if self.augment_data and not ('test' in fname) and not ('val' in fname):
sample = {}
new_sequence, new_mean, new_var = self.augment_frame(sequence, mean, var, mask)
if not torch.isnan(new_sequence).any():
new_mean, new_var = new_mean.float().unsqueeze(0), new_var.float().unsqueeze(0)
self.len+=1
sample['observation']=new_sequence
sample['mask']=mask
sample['pedestrians']=pedestrians
sample['mean']=new_mean
sample['var']=new_var
sample['fname'] = fname
self.samples+=[sample]
j+=self.shift
def get_sequence(self,frame, means=None, var=None):
if means is None:
frame['x'] = frame['x']-frame['x'].min()
frame['y'] = frame['y']-frame['y'].min()
means = [frame['x'].mean(), frame['y'].mean()]
if var is None:
var = [frame['x'].max(), frame['y'].max()]
frame['x'] = frame['x']/var[0]
frame['y'] = frame['y']/var[1]
frame=frame.values
frameIDs=np.unique(frame[:,0]).tolist()
input_frame = frame[np.isin(frame[:,0], frameIDs[:self.obs_len])]
pedestrians = np.unique(input_frame[:,1]).tolist()
sequence = []
mask = []
sequence_=[]
non_linear_traj=[]
for p, pedestrian in enumerate(pedestrians):
pedestrianTraj = frame[frame[:,1]==pedestrian]
pedestrianTrajlen=np.shape(pedestrianTraj)[0]
if pedestrianTrajlen<(self.obs_len+self.pred_len):
continue
pedestrianIDs=np.unique(pedestrianTraj[:,0])
maskPedestrian=np.ones(len(frameIDs))
pedestrianTraj=pedestrianTraj[:,2:]
sequence+=[torch.from_numpy(pedestrianTraj[:,:2].astype('float32')).unsqueeze(0)]
mask+=[torch.from_numpy(maskPedestrian.astype('float32')).bool().unsqueeze(0)]
if not sequence:
sequence = torch.zeros(len(pedestrians),len(frameIDs),2)
mask = torch.BoolTensor(len(pedestrians),len(frameIDs))
pedestrians = torch.tensor(0)
else:
sequence = torch.stack(sequence).view(-1,len(frameIDs),2)
mask = torch.stack(mask).view(-1, len(frameIDs))
pedestrians = torch.tensor(sequence.size(0))
return sequence,mask,pedestrians,means,var
def augment_frame(self, frame, mean, var, mask):
##### Not used in AAAI version #########
frame = revert_orig_tensor(frame, mean, var, mask)
def rotate_pc(pc, alpha):
M = np.array([[np.cos(alpha), -np.sin(alpha)],
[np.sin(alpha), np.cos(alpha)]])
M = torch.from_numpy(M.astype('float32'))
return M@pc
pedestrians, seq_len, _ = list(frame.size())
angle = np.random.choice(np.arange(0, 360, 15))
alpha = angle * np.pi / 180
for ped in range(pedestrians):
frame[ped,...] = rotate_pc(frame[ped,...].view(2,seq_len),alpha).view(seq_len,2)
frame[...,0] = frame[...,0]-frame[...,0].min()
frame[...,1] = frame[...,1]-frame[...,1].min()
means = frame.view(-1,2).mean(dim=0)
var = frame.view(-1,2).max(dim=0)[0]
frame[...,0] = frame[...,0].div(var[0])
frame[...,1] = frame[...,1].div(var[1])
return frame, means, var
def __getitem__(self,idx):
sample = self.samples[idx]
sequence, mask, pedestrians, mean, var = sample['observation'], sample['mask'], sample['pedestrians'], sample['mean'], sample['var']
fname = sample['fname']
ip=sequence[:,:self.obs_len,...]
op=sequence[:,self.obs_len:,...]
ip_mask = mask[:,:self.obs_len]
op_mask = mask[:,self.obs_len].unsqueeze(-1).expand(ip_mask.size(0),self.pred_len)
ip_ = revert_orig_tensor(ip, mean, var, ip_mask)
dist_matrix, bearing_matrix, heading_matrix =get_features(ip_, 0, eps=0)
return {'input':ip,'output':op[...,:2],'dist_matrix':dist_matrix,
'bearing_matrix':bearing_matrix,'heading_matrix':heading_matrix,
'ip_mask':ip_mask,'op_mask':op_mask,'pedestrians':pedestrians,
'mean': mean, 'var': var}
def pad_sequence(sequences,f,_len,padding_value=0.0):
dim_ = sequences[0].size(1)
if 'matrix' in f:
out_dims = (len(sequences),_len,dim_,_len)
elif 'mask' in f:
out_dims = (len(sequences),_len,dim_)
else:
out_dims = (len(sequences),_len,dim_,sequences[0].size(-1))
out_tensor = sequences[0].data.new(*out_dims).fill_(padding_value)
for i, tensor in enumerate(sequences):
length=tensor.size(0)
if 'matrix' in f:
out_tensor[i,:length,:,:length]=tensor
else:
out_tensor[i,:length,...]=tensor
return out_tensor
class collate_function(object):
"""
Custom collate function to return equal sized samples to enable batched training
"""
def __call__(self,batch):
"""
Args:
batch: batch of unequal-sized samples
Returns:
output_batch: batch of equal-sized samples to enable batched dataloading and training
"""
batch_size=len(batch)
features = list(batch[0].keys())
_len = max([b['pedestrians'].data for b in batch])
output_batch = []
for f in features:
if ('pedestrians' in f) or ('mean' in f) or ('var' in f):
output_feature=torch.stack([b[f] for b in batch])
else:
output_feature = pad_sequence([b[f] for b in batch],f,_len)
output_batch.append(output_feature)
return tuple(output_batch)
def poly_fit(traj, traj_len, threshold):
t = np.linspace(0, traj_len-1, traj_len)
res_x = np.polyfit(t, traj[0, -traj_len:], 2, full=True)[1]
res_y = np.polyfit(t, traj[1, -traj_len:], 2, full=True)[1]
if res_x+res_y>threshold:
return 1.0
else:
return 0.0