-
Notifications
You must be signed in to change notification settings - Fork 1
/
DSP_QC_functions.R
1042 lines (812 loc) · 37.1 KB
/
DSP_QC_functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
### Initialization Functions ###
initialize_object <- function(dcc.files,
pkc.files,
annotation.file,
annotation.sheet.name = "Template",
sample.id.field.name = "Sample_ID",
roi.field.name = "roi",
panel.field.name = "panel",
slide.field.name = "slide name",
class.field.name = "class",
region.field.name = "region",
segment.field.name = "segment",
area.field.name = "area",
nuclei.field.name = "nuclei",
segment.id.length = 4){
# load all input data into a GeoMX object
object <-
readNanoStringGeoMxSet(
dccFiles = dcc.files,
pkcFiles = pkc.files,
phenoDataFile = annotation.file,
phenoDataSheet = annotation.sheet.name,
phenoDataDccColName = sample.id.field.name,
experimentDataColNames = panel.field.name
)
# Check the column names for required fields exist in the annotation
required.field.names = c(slide.field.name,
class.field.name,
region.field.name,
segment.field.name,
roi.field.name)
given.field.names = colnames(sData(object))
# Check each of the required fields for correct naming
for (field in required.field.names) {
if (!(field %in% given.field.names)) {
stop(
paste0(
field,
" is not found in the annotation sheet field names.\n"
)
)
}
}
# Check for the optional fields
optional.field.names = c("area", "nuclei")
for (field in optional.field.names) {
if (!(field %in% given.field.names)) {
warning(
paste0(
field,
" is not found in the annotation and will not be considered \n"
)
)
}
}
# Rename all of the required columns based on user parameters in data
colnames(object@phenoData@data)[colnames(object@phenoData@data) == slide.field.name] = "slide_name"
colnames(object@phenoData@data)[colnames(object@phenoData@data) == class.field.name] = "class"
colnames(object@phenoData@data)[colnames(object@phenoData@data) == region.field.name] = "region"
colnames(object@phenoData@data)[colnames(object@phenoData@data) == segment.field.name] = "segment"
colnames(object@phenoData@data)[colnames(object@phenoData@data) == roi.field.name] = "roi"
# Rename all of the required columns based on user parameters in metadata
rownames(object@phenoData@varMetadata)[rownames(object@phenoData@varMetadata) == slide.field.name] = "slide_name"
rownames(object@phenoData@varMetadata)[rownames(object@phenoData@varMetadata) == class.field.name] = "class"
rownames(object@phenoData@varMetadata)[rownames(object@phenoData@varMetadata) == region.field.name] = "region"
rownames(object@phenoData@varMetadata)[rownames(object@phenoData@varMetadata) == segment.field.name] = "segment"
rownames(object@phenoData@varMetadata)[rownames(object@phenoData@varMetadata) == roi.field.name] = "roi"
# Rename optional columns if they are present
colnames(object@phenoData@data)[colnames(object@phenoData@data) == area.field.name] = "area"
colnames(object@phenoData@data)[colnames(object@phenoData@data) == nuclei.field.name] = "nuclei"
rownames(object@phenoData@varMetadata)[rownames(object@phenoData@varMetadata) == area.field.name] = "area"
rownames(object@phenoData@varMetadata)[rownames(object@phenoData@varMetadata) == nuclei.field.name] = "nuclei"
# Reformat to remove spaces and dashes in the main annotation columns
annotation.columns <- c("class", "region", "segment", "slide_name")
for(column in annotation.columns){
pData(object)[[column]] <- gsub("\\s+", "", pData(object)[[column]])
pData(object)[[column]] <- gsub("-", "", pData(object)[[column]])
}
# Establish the segment specific IDs
pData(object)$segmentID <- paste0(substr(pData(object)$class, 1, segment.id.length),
"|",
substr(pData(object)$region, 1, segment.id.length),
"|",
substr(pData(object)$segment, 1, segment.id.length),
"|",
substr(pData(object)$slide_name, 1, segment.id.length),
"|",
sData(object)$roi)
return(object)
}
plot_sankey <- function(object,
lane.1,
lane.2,
lane.3,
lane.4,
fill.lane){
#Rename the slide name column for formatting
pData(object) <- pData(object) %>%
mutate(slide = gsub("slide_", "", slide_name))
lanes <- c(lane.1, lane.2, lane.3, lane.4)
#Establish variables for the Sankey plot
x <- id <- y <- n <- NULL
# select the annotations we want to show, use `` to surround column
# names with spaces or special symbols
# Create a count matrix
count.mat <- count(pData(object),
!!as.name(lane.1),
!!as.name(lane.2),
!!as.name(lane.3),
!!as.name(lane.4))
# Remove any rows with NA values
na.per.column <- colSums(is.na(count.mat))
na.total.count <- sum(na.per.column)
if(na.total.count > 0){
count.mat <- count.mat[!rowSums(is.na(count.mat)),]
rownames(count.mat) <- 1:nrow(count.mat)
}
# Gather the data and plot in order: lane 1, lane 2, ..., lane n
# gather_set_data creates x, id, y, and n fields within sankey.count.data
# Establish the levels of the Sankey
sankey.count.data <- gather_set_data(count.mat, 1:4)
# Define the annotations to use for the Sankey x axis labels
sankey.count.data$x[sankey.count.data$x == 1] <- lane.1
sankey.count.data$x[sankey.count.data$x == 2] <- lane.2
sankey.count.data$x[sankey.count.data$x == 3] <- lane.3
sankey.count.data$x[sankey.count.data$x == 4] <- lane.4
sankey.count.data$x <-
factor(
sankey.count.data$x,
levels = c(as.name(lane.1),
as.name(lane.2),
as.name(lane.3),
as.name(lane.4)))
# For position of Sankey 100 segment scale
adjust.scale.pos = -1.1
# plot Sankey diagram
sankey.plot <-
ggplot(sankey.count.data,
aes(
x,
id = id,
split = y,
value = n
)) +
geom_parallel_sets(aes(fill = !!as.name(fill.lane)),
alpha = 0.5,
axis.width = 0.1) +
geom_parallel_sets_axes(axis.width = 0.2,
fill = "seashell",
color = "seashell4") +
geom_parallel_sets_labels(color = "black",
size = 3,
angle = 0) +
theme_classic(base_size = 14) +
theme(
legend.position = "bottom",
axis.ticks.y = element_blank(),
axis.line = element_blank(),
axis.text.y = element_blank()
) +
scale_y_continuous(expand = expansion(0)) +
scale_x_discrete(expand = expansion(0)) +
labs(x = "", y = "") +
annotate(
geom = "segment",
x = (3.25 - adjust.scale.pos),
xend = (3.25 - adjust.scale.pos),
y = 20,
yend = 120,
lwd = 2
) +
annotate(
geom = "text",
x = (3.19 - adjust.scale.pos),
y = 70,
angle = 90,
size = 5,
hjust = 0.5,
label = "100 AOIs"
)
# Make the annotation bar plot
AOI.counts <- sankey.count.data
# Gather the counts for each annotation
AOI.counts$AOI_count <- as.numeric(AOI.counts$n)
AOI.counts$type <- as.character(AOI.counts$x)
AOI.counts$annotation <- AOI.counts$y
# Create a sum for each annotation
AOI.annotation.sum <- data.frame(matrix(ncol = 2, nrow = 0))
colnames(AOI.annotation.sum) <- c("annotation", "AOI_sum")
# Create a data frame of AOI sums per annotation
for(anno in unique(AOI.counts$annotation)){
# Filter for a specific annotation
anno.subset <- AOI.counts %>%
filter(annotation == anno)
# Add together the AOI counts
anno.sum.row <- data.frame(AOI_sum = sum(anno.subset$AOI_count), annotation = anno)
# Append to the master AOI sum df
AOI.annotation.sum <- rbind(AOI.annotation.sum, anno.sum.row)
}
# Creare a final df for plotting
AOI.counts.all <- merge(AOI.annotation.sum, AOI.counts, by = "annotation")
AOI.counts.all <- AOI.counts.all %>%
select(all_of(c("AOI_sum", "type", "annotation"))) %>%
distinct()
# Create the bar plots
AOI.bar.plot <- ggplot(AOI.counts.all, aes(x = annotation, y = AOI_sum)) +
geom_bar(stat = "identity") +
facet_wrap(~ type, ncol = 2, scales = "free_x") +
theme(axis.text.x = element_text(angle = 30, hjust = 1)) +
geom_text(aes(label = AOI_sum), vjust = -0.3, size = 3.5) +
labs(x = NULL, y = "AOI Count") +
ylim(0, max(AOI.counts.all$AOI_sum) + 30)
return(list("sankey.plot" = sankey.plot,
"AOI.bar.plot" = AOI.bar.plot,
"sankey.count.data" = sankey.count.data))
}
upsetr_plot <- function(object,
annotation.groups){
# To hold all annotation values for each annotation of interest
all.group.values <- c()
# Gather all of the values for the upsetr plot
for(group in annotation.groups){
group.values <- unique(pData(object)[[group]])
all.group.values <- c(all.group.values, group.values)
}
# Create the upset df with all FALSE values
upset.df <- as.data.frame(matrix(FALSE, nrow = nrow(pData(object)),
ncol = length(all.group.values)))
# Rename the columns to be all possible values for the upsetr plot
colnames(upset.df) <- all.group.values
# Subset the annotation for only the relevant columns for upsetr
anno.subset <- pData(object) %>% select(all_of(annotation.groups))
# For each row in the annotation data, if it contains the value of a column in the upsetr plot mark as TRUE
for (i in 1:nrow(anno.subset)) {
row.values <- as.character(unlist(anno.subset[i, ]))
upset.df[i, row.values] <- TRUE
}
# Create the UpSetR Plot
AOI.inter.count.plot <- upset(upset.df,
intersect = all.group.values,
width_ratio = 0.4,
min_size = 4,
set_sizes=(upset_set_size() +
geom_text(aes(label=..count..),
hjust=1.1, stat='count') +
expand_limits(y=nrow(upset.df)) +
theme(axis.text.x=element_text(angle=90))))
return(AOI.inter.count.plot)
}
### QC Preprocessing Functions ###
aoi_flag_table <- function(aoi.flags){
flag.column.detect <- sapply(aoi.flags, is.logical)
flag.column.names <- names(aoi.flags[flag.column.detect])
# A function for coloring TRUE flags as red
red.flag <- function(x) {
x <- as.logical(x)
ifelse(x, "red", "white")
}
# Create the table using the flag coloring function
aoi.flag.table <- qc.output$segment.flags %>%
gt() %>%
data_color(columns = flag.column.names,
fn = red.flag,
alpha = 0.7)
return(aoi.flag.table)
}
probe_flag_table <- function(probe.flags,
object){
# Create the table for probe flags
probe.flags.df <- probe.flags %>% separate_rows(LocalFlag, sep = ",")
# Rename the dcc file name column
probe.flags.df$Sample_ID <- probe.flags.df$LocalFlag
# Grab the annotation for only the columns to map
annotation <- pData(object)
annotation$Sample_ID <- rownames(annotation)
annotation.subset <- annotation %>%
select(Sample_ID, segmentID)
# Map the AOI names in the flags to the segmentID
probe.flags.df <- merge(probe.flags.df, annotation.subset, by = "Sample_ID")
# Remove the dcc file name column
probe.flags.table <- probe.flags.df %>%
select(TargetName, RTS_ID, segmentID, FlagType) %>%
gt()
# For a summary of only probe names
probe.flag.summary <- qc.output$probe.flags %>%
select(TargetName, RTS_ID, FlagType) %>%
gt()
return(list("probe.flag.table" = probe.flags.table,
"probe.flag.summary" = probe.flag.summary))
}
### Filtering Functions ###
loq_detection <- function(object,
pkc.file.names){
# Set up lists of segment IDs
segment.list.total <- pData(object)$segmentID
# Define Modules
modules <- gsub(".pkc", "", pkc.file.names)
# Calculate limit of quantification (LOQ) in each segment
# LOQ = geomean(NegProbes) * geoSD(NegProbes)^(LOQ cutoff)
# LOQ is calculated for each module (pkc file)
loq <- data.frame(row.names = colnames(object))
loq.min <- 2
loq.cutoff <- 2
for(module in modules) {
vars <- paste0(c("NegGeoMean_", "NegGeoSD_"),
module)
if(all(vars[1:2] %in% colnames(pData(object)))) {
neg.geo.mean <- vars[1]
neg.geo.sd <- vars[2]
loq[, module] <-
pmax(loq.min,
pData(object)[, neg.geo.mean] *
pData(object)[, neg.geo.sd] ^ loq.cutoff)
}
}
# Store the loq df in the annotation df
pData(object)$loq <- loq
# Setup a master loq matrix
loq.mat <- c()
for(module in modules) {
# Gather rows with the given module
ind <- fData(object)$Module == module
# Check if each feature has counts above the LOQ
mat.i <- t(esApply(object[ind, ], MARGIN = 1,
FUN = function(x) {
x > loq[, module]
}))
# Store results in the master loq matrix
loq.mat <- rbind(loq.mat, mat.i)
}
# ensure ordering since this is stored outside of the geomxSet
loq.mat <- loq.mat[fData(object)$TargetName, ]
# Evaluate and Filter Segment Gene Detection Rate
# Save detection rate information to pheno data
pData(object)$GenesDetected <- colSums(loq.mat, na.rm = TRUE)
pData(object)$GeneDetectionRate <- 100*(pData(object)$GenesDetected / nrow(object))
# Establish detection bins
detection.bins <- c("<1", "1-5", "5-10", "10-15", ">15")
# Determine detection thresholds: 1%, 5%, 10%, 15%, >15%
pData(object)$DetectionThreshold <-
cut(pData(object)$GeneDetectionRate,
breaks = c(0, 1, 5, 10, 15, 100),
labels = detection.bins)
fData(object)$DetectedSegments <- rowSums(loq.mat, na.rm = TRUE)
fData(object)$DetectionRate <-
100*(fData(object)$DetectedSegments / nrow(pData(object)))
# Establish detection bins
detection.bins <- c("0", "<1", "1-5", "5-10", "10-20", "20-30", "30-40", "40-50", ">50")
# Determine detection thresholds: 1%, 5%, 10%, 15%, >15%
fData(object)$DetectionThreshold <-
cut(fData(object)$DetectionRate,
breaks = c(-1, 0, 1, 5, 10, 20, 30, 40, 50, 100),
labels = detection.bins)
return(list("object" = object,
"loq.matrix" = loq.mat))
}
gene_detection <- function(object,
facet.column = NULL,
loq.mat = NULL){
# Create the plot for the all genes
gene.bar.plot.total <- ggplot(fData(object),
aes(x = DetectionThreshold)) +
geom_bar(aes(fill = Module)) +
geom_text(stat = "count", aes(label = ..count..), vjust = -0.5) +
theme_bw() +
scale_y_continuous(expand = expansion(mult = c(0, 0.1))) +
labs(x = "Detection Rate (Detected AOIs/Total AOIs)",
y = "Genes",
fill = "Probe Set")
# If a facet has been selected also make a faceted bar plot
if(!is.null(facet.column)) {
# Gather the facet annotation information
annotation.data <- pData(object)
facet.values <- unique(annotation.data[[facet.column]])
# A master df to hold all feature (gene) detection for facet values
feature.detect.facet.df <- data.frame(feature = rownames(fData(object)))
# Gather the IDs for each facet value
for(value in facet.values){
# Gather the sample IDs for only the current facet value
value.df <- annotation.data %>%
filter(!!sym(facet.column) == value)
value.IDs <- rownames(value.df)
total.AOIs <- length(value.IDs)
# Gather the detection per gene for value Sample IDs
loq.mat.value <- loq.mat[, value.IDs]
# Compute the detection for each feature
value.feature.df <- data.frame(feature = rownames(fData(object)))
value.feature.df[[value]] <- 100*(rowSums(loq.mat.value, na.rm = TRUE)/total.AOIs)
# Add the detection per feature for this value to the master df
feature.detect.facet.df <- merge(feature.detect.facet.df,
value.feature.df,
by = "feature")
}
# Melt the feature detect facet df for easier ggplot faceting
facet.df.melt <- feature.detect.facet.df %>%
pivot_longer(cols = -feature,
names_to = "class",
values_to = "detection")
# Create bins for the boxplot
detection.bins <- c("0",
"<1",
"1-5",
"5-10",
"10-20",
"20-30",
"30-40",
"40-50",
">50")
# Determine detection thresholds: 1%, 5%, 10%, 15%, >15%
facet.df.melt$detection_bin <-
cut(facet.df.melt$detection,
breaks = c(-1, 0, 1, 5, 10, 20, 30, 40, 50, 100),
labels = detection.bins)
facet.table <- table(facet.df.melt$detection_bin,
facet.df.melt$class)
max.count.facet <- max(facet.table)
gene.bar.plot.facet <- ggplot(facet.df.melt,
aes(x = detection_bin,
fill = class)) +
geom_bar(position = "dodge") +
scale_y_continuous(expand = expansion(mult = c(0, 0.1)),
breaks = seq(0, max(max.count.facet), by = 500)) +
labs(x = "Detection Rate (Detected AOIs/Total AOIs)",
y = "Genes") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
}
# Plot detection rate loss
# Set up the detection percentage
detect.loss <- data.frame(Freq = c(1, 5, 10, 20, 30, 50))
detect.loss$Number <-
unlist(lapply(c(1, 5, 10, 20, 30, 50),
function(x) {sum(fData(object)$DetectionRate >= x)}))
# Set up the rate
detect.loss$Percent_of_Panel <- detect.loss$Number / nrow(fData(object.segment.filtered))
rownames(plot.detect) <- detect.loss$Freq
# Create the detection loss barplot
detect.loss.plot <- ggplot(detect.loss, aes(x = as.factor(Freq),
y = Percent_of_Panel,
fill = Percent_of_Panel)) +
geom_bar(stat = "identity") +
geom_text(aes(label = formatC(Number, format = "d", big.mark = ",")),
vjust = 1.6, color = "black", size = 4) +
scale_fill_gradient2(low = "orange2", mid = "lightblue",
high = "dodgerblue3", midpoint = 0.65,
limits = c(0,1),
labels = scales::percent) +
theme_bw() +
scale_y_continuous(labels = scales::percent, limits = c(0,1),
expand = expansion(mult = c(0, 0))) +
labs(x = "% of AOIs",
y = "Gene Detection, % of Panel")
return(list("total.plot" = gene.bar.plot.total,
"facet.plot" = gene.bar.plot.facet,
"facet.table" = facet.table,
"detect.loss.plot" = detect.loss.plot))
}
aoi_detection <- function(object){
# stacked bar plot of different cut points (1%, 5%, 10%, 15%)
detection.bar.plot <- ggplot(pData(object),
aes(x = DetectionThreshold)) +
geom_bar(aes(fill = region)) +
geom_text(stat = "count", aes(label = ..count..), vjust = -0.5) +
theme_bw() +
scale_y_continuous(expand = expansion(mult = c(0, 0.1))) +
labs(x = "Detection Rate (Detected Genes/Total Genes)",
y = "AOIs",
fill = "AOI Annotation")
# cut percent genes detected at 1, 5, 10, 15
AOI.table <- kable(table(pData(object)$DetectionThreshold,
pData(object)$class))
# Make a list of segments with low detection
low.detection.AOIs <- pData(object) %>%
filter(GeneDetectionRate < 5) %>%
select(any_of(c("segmentID", "GeneDetectionRate")))
rownames(low.detection.AOIs) <- NULL
# Print low detection segment table
low.detection.table <- low.detection.AOIs %>% gt()
return(list("detection.bar.plot" = detection.bar.plot,
"low.detection.table" = low.detection.table))
}
plot_distribution <- function(object, facet.annotation){
# Set up variables for computing stat data
color.variable <- Value <- Statistic <- NegProbe <- Q3 <- Annotation <- NULL
neg.probes<- "NegProbe-WTX"
# Compute the stat data
stat.data <- base::data.frame(row.names = colnames(exprs(object)),
AOI = colnames(exprs(object)),
Annotation = Biobase::pData(object)[, facet.annotation],
Q3 = unlist(apply(exprs(object), 2,
quantile, 0.75, na.rm = TRUE)),
NegProbe = exprs(object)[neg.probes, ])
# Melt stat data for easier plotting
stat.data.melt <- melt(stat.data, measures.vars = c("Q3", "NegProbe"),
variable.name = "Statistic", value.name = "Value")
# Compute means for each annnotation group and negative background
stat.data.mean <- stat.data.melt %>%
mutate(group = paste0(Annotation, Statistic)) %>%
group_by(group) %>%
mutate(group_mean = mean(Value)) %>%
ungroup() %>%
select(Annotation, Statistic, group_mean) %>%
distinct()
# Plot with annotation groups separated
distribution.plot <- ggplot(stat.data.melt, aes(x=Value,
color=Statistic,
fill=Statistic)) +
geom_density(alpha=0.6) +
geom_vline(data=stat.data.mean, aes(xintercept=group_mean, color=Statistic),
linetype="dashed") +
scale_color_manual(values = c("#56B4E9", "#E69F00")) +
scale_fill_manual(values=c("#56B4E9", "#E69F00")) +
scale_x_continuous(trans = "log2") +
facet_wrap(~Annotation, nrow = 1) +
labs(title=paste0("Density of AOI counts Q3 vs Negative by ", facet.annotation),
x="Probe Counts per AOI",
y = "Density from AOI Count",
color = "Statistic",
fill = "Statistic") +
theme_bw()
# Plot overlapping density
distribution.plot.overlap <- ggplot(stat.data.melt, aes(x=Value,
color=Annotation,
fill=Annotation)) +
geom_density(alpha=0.2) +
scale_x_continuous(trans = "log2") +
labs(title=paste0("Density of AOI counts Q3 by ", facet.annotation),
x="Probe Counts per AOI",
y = "Density from AOI Count",
color = "Annotation",
fill = "Annotation") +
theme_bw()
# Combine plots into a single output
distr.plots <- plot_grid(distribution.plot,
distribution.plot.overlap,
ncol = 1)
# Create the dot plot
q3.neg.slope.plot <- ggplot(stat.data,
aes(x = NegProbe, y = Q3, color = Annotation)) +
geom_abline(intercept = 0,
slope = 1,
lty = "dashed",
color = "darkgray") +
geom_point() + guides(color = "none") +
theme_bw() +
scale_x_continuous(trans = "log2") +
scale_y_continuous(trans = "log2") +
theme(aspect.ratio = 1) +
labs(x = "Negative Probe GeoMean, Counts", y = "Q3 Value, Counts")
# Create the ratio dot plot
q3.neg.ratio.plot <- ggplot(stat.data,
aes(x = NegProbe,
y = Q3/NegProbe,
color = Annotation)) +
geom_hline(yintercept = 1,
lty = "dashed",
color = "darkgray") +
geom_point() +
theme_bw() +
scale_x_continuous(trans = "log2") +
scale_y_continuous(trans = "log2") +
theme(aspect.ratio = 1) +
labs(x = "Negative Probe GeoMean, Counts", y = "Q3/NegProbe Value, Counts")
stat.data <- stat.data %>%
mutate(q3_neg_ratio = Q3/NegProbe) %>%
mutate(low_ratio_flag = ifelse(q3_neg_ratio < 1.1,
"TRUE",
"FALSE"))
return(list("stat.data" = stat.data,
"q3.neg.ratio.plot" = q3.neg.ratio.plot,
"q3.neg.slope.plot" = q3.neg.slope.plot,
"distr.plots" = distr.plots))
}
# Set up the MA plot table
make_MA <- function(contrast.field,
condition.label,
reference.label,
log.counts,
raw.log.counts,
annotation){
# Gather the sample IDs for condition and reference groups
condition.samples <- rownames(annotation[annotation[[contrast.field]] == condition.label, ])
reference.samples <- rownames(annotation[annotation[[contrast.field]] == reference.label, ])
# Gather normalized and raw counts for both groups
condition.counts <- as.data.frame(log.counts[, condition.samples])
reference.counts <- as.data.frame(log.counts[, reference.samples])
condition.raw.counts <- as.data.frame(raw.log.counts[, condition.samples])
reference.raw.counts <- as.data.frame(raw.log.counts[, reference.samples])
# Get the mean log score for each gene for both
# normalized counts
condition.row.order <- rownames(condition.counts)
condition.counts <- as.data.frame(sapply(condition.counts, as.numeric))
condition.counts$cond_mean <- rowMeans(condition.counts)
condition.counts$gene <- condition.row.order
reference.row.order <- rownames(reference.counts)
reference.counts <- as.data.frame(sapply(reference.counts, as.numeric))
reference.counts$ref_mean <- rowMeans(reference.counts)
reference.counts$gene <- reference.row.order
# raw counts
condition.row.order <- rownames(condition.raw.counts)
condition.raw.counts <- as.data.frame(sapply(condition.raw.counts, as.numeric))
condition.raw.counts$cond_raw_mean <- rowMeans(condition.raw.counts)
condition.raw.counts$gene <- condition.row.order
reference.row.order <- rownames(reference.raw.counts)
reference.raw.counts <- as.data.frame(sapply(reference.raw.counts, as.numeric))
reference.raw.counts$ref_raw_mean <- rowMeans(reference.raw.counts)
reference.raw.counts$gene <- reference.row.order
# Create a new data frame of the gene and group means with M and A values
normalized.counts <- merge(condition.counts, reference.counts, by = "gene") %>%
select(gene, cond_mean, ref_mean) %>%
mutate(M.value = cond_mean - ref_mean) %>%
mutate(A.value = (cond_mean + ref_mean)/2)
raw.counts <- merge(condition.raw.counts, reference.raw.counts, by = "gene") %>%
select(gene, cond_raw_mean, ref_raw_mean) %>%
mutate(M.raw.value = cond_raw_mean - ref_raw_mean) %>%
mutate(A.raw.value = (cond_raw_mean + ref_raw_mean)/2)
# Add the DE results and log counts together
ma.plot.counts <- merge(normalized.counts, raw.counts, by = "gene")
# Set the bounds for the y axix so that they are aligned
min.y <- min(c(min(ma.plot.counts$M.value),min(ma.plot.counts$M.raw.value)))
max.y <- max(c(max(ma.plot.counts$M.value),max(ma.plot.counts$M.raw.value)))
ma.plot.norm <- ggplot(ma.plot.counts, aes(x = A.value, y = M.value)) +
geom_point(alpha = 0.5, col = "black") +
geom_smooth(method=loess, col="steelblue1") +
geom_hline(yintercept = 0, lty = "dashed") +
labs(x = "Average log expression",
y = paste0("log(", condition.label, ") - log(", reference.label, ")"),
title = "Post-normalization") +
ylim(min.y, max.y) +
theme_classic()
ma.plot.raw <- ggplot(ma.plot.counts, aes(x = A.raw.value, y = M.raw.value)) +
geom_point(alpha = 0.5, col = "black") +
geom_smooth(method=loess, col="steelblue1") +
geom_hline(yintercept = 0, lty = "dashed") +
labs(x = "Average log expression",
y = paste0("log(", condition.label, ") - log(", reference.label, ")"),
title = "Pre-normalization") +
ylim(min.y, max.y) +
theme_classic()
combined.MA.plots <- arrangeGrob(ggplotGrob(ma.plot.raw),
ggplotGrob(ma.plot.norm),
nrow = 1, ncol = 2)
return(combined.MA.plots)
}
normalize_counts <- function() {}
top_variable_heatmap <- function(log2.counts,
top.x.genes = 500,
annotation.column,
annotation.row = NULL,
anno.colors,
cluster.rows = FALSE,
cluster.columns = FALSE,
main.title,
row.gaps = NULL,
column.gaps = NULL,
show.rownames = FALSE,
show.colnames = FALSE){
# create Coefficient of Variation (CV) function and apply to the log counts
calc_CV <- function(x) {sd(x) / mean(x)}
cv.df <- data.frame(CV = apply(log2.counts, 1, calc_CV))
# Take the top X most variable genes by CV score
cv.df.top <- cv.df %>% arrange(desc(CV)) %>% slice(1:top.x.genes)
# Get the list of top CV genes
top.cv.gene.list <- rownames(cv.df.top)
# Subset the counts for the top CV genes
top.cv.heatmap.counts <- log2.counts[rownames(log2.counts) %in% top.cv.gene.list, ]
# Order the counts by top CV
top.cv.heatmap.counts <- top.cv.heatmap.counts[match(top.cv.gene.list, rownames(top.cv.heatmap.counts)), ]
# Subset the annotation and arrange the order
annotation.column.fields <- names(anno.colors)
annotation.row.order <- gsub("\\.dcc", "", rownames(annotation.column))
# Order the samples in counts the same as the annotation
top.cv.heatmap.counts <- top.cv.heatmap.counts[, annotation.row.order]
heatmap.plot <- pheatmap(top.cv.heatmap.counts,
main = main.title,
show_rownames = show.rownames,
scale = "row",
show_colnames = show.colnames,
border_color = NA,
cluster_rows = cluster.rows,
cluster_cols = cluster.columns,
clustering_method = "average",
clustering_distance_rows = "correlation",
clustering_distance_cols = "correlation",
color = colorRampPalette(c("blue", "white", "red"))(120),
annotation_row = annotation.row,
annotation_col = annotation.column,
annotation_colors = anno.colors,
gaps_row = row.gaps,
gaps_col = column.gaps,
fontsize_row = 4)
return(heatmap.plot)
}
plot_umap <- function(log.counts,
annotation,
group.field,
roi.field,
slide.field){
# Set up the counts and order by sample ID
log.counts.transpose <- as.data.frame(t(log.counts))
log.counts.transpose <- log.counts.transpose[order(rownames(log.counts.transpose)), ]
# Order the annotation by sample ID
annotation <- annotation[order(rownames(annotation)), ]
# Run 2D UMAP and select PCs
umap <- umap(log.counts.transpose,
n_components = 2,
random_state = 15)
layout <- umap[["layout"]]
layout <- data.frame(layout)
# Merge the annotation and UMAP
layout$sampleID <- rownames(layout)
annotation$sampleID <- rownames(annotation)
umap.df <- merge(layout, annotation, by = "sampleID")
# Use the correct column names in mutate and select
umap.df <- umap.df %>%
mutate(segmentID = paste({{ roi.field }}, {{ slide.field }}, sep = "|")) %>%
select(segmentID, X1, X2, {{ group.field }})
# Create the UMAP plot
umap.plot <- ggplot(umap.df,
aes(x = X1,
y = X2,
color = !!sym(group.field),
fill = !!sym(group.field))) +
geom_point() +
geom_encircle(inherit.aes = TRUE,
alpha = 0.2)
return(umap.plot)
}
make_rle_plot <- function(counts,
annotation,
annotation.facet){
# Convert counts to df and tranform to log
counts <- as.data.frame(counts)
log.counts <- counts %>%
mutate(across(everything(), ~ log2(. + 1)))
# Find the median for each gene
log.counts$median <- apply(log.counts, 1, median)
# Calculate median deviations
median.deviations <- log.counts %>%
rowwise() %>%
mutate(across(-median, ~ . - median)) %>%
ungroup()
# Add rownames back
median.deviations <- as.data.frame(median.deviations)
rownames(median.deviations) <- rownames(log.counts)
# Transform the devations for combining with the annotation
deviations.transform <- as.data.frame(t(median.deviations))
# Add a column for mapping
deviations.transform$sampleID <- rownames(deviations.transform)
annotation$sampleID <- rownames(annotation)
# Subset the annotation column for facet of interest
subset.columns <- c("sampleID", annotation.facet)
annotation.subset <- annotation %>%
select(all_of(subset.columns))
# Map deviations and annotation together
annotation.deviation.df <- merge(annotation.subset,
deviations.transform,
by = "sampleID")
# Melt the combined df and order by the facet
melt.df <- melt(annotation.deviation.df, variable.name = "gene")
# Make sure the facet variable is a factor and ordered
melt.df[[annotation.facet]] <- factor(melt.df[[annotation.facet]],
levels = unique(melt.df[[annotation.facet]]))
# Reorder the data based on annotation.facet for plotting
melt.df <- melt.df %>%
arrange(.data[[annotation.facet]])
# Explicitly convert sampleID to a factor to maintain order in ggplot
melt.df$sampleID <- factor(melt.df$sampleID, levels = unique(melt.df$sampleID))
rle.plot <- ggplot(data = melt.df, aes(x = sampleID,
y = value,
color = !!sym(annotation.facet))) +
geom_boxplot(alpha = 0.2) +
theme(axis.text.x = element_blank()) +
labs(x = "AOI",
y = "Deviation from Gene Log Count Median") +
geom_hline(yintercept = 0,
linetype = "dashed")
return(rle.plot)
}
nuclei_plot <- function(annotation,
color,
facet,
x.axis,
order.by.ROI.num = FALSE){