-
Notifications
You must be signed in to change notification settings - Fork 0
/
ann-1.py
139 lines (110 loc) · 4.81 KB
/
ann-1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#Artificial Neural Network
#Installing Theano
#Installing Tensorflow
#Installing Keras
#Part 1 - Data Preprocessing
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('Churn_Modelling.csv')
X = dataset.iloc[:, 3:13].values
y = dataset.iloc[:, 13].values
# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_1 = LabelEncoder()
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1])
labelencoder_X_2 = LabelEncoder()
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2])
onehotencoder = OneHotEncoder(categorical_features = [1])
X = onehotencoder.fit_transform(X).toarray()
X = X[:,1:]
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
#Part 2 - Now let's make the ANN!
#Importing the Keras libraries and packages
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
# Initializing the ANN
classifier = Sequential()
#Adding the input layer and the first hidden layer with dropout
classifier.add(Dense(units = 6,kernel_initializer = 'glorot_uniform', activation = 'relu', input_dim = 11))
classifier.add(Dropout(rate=0.1))
#Adding the second hidden layer
classifier.add(Dense(units = 6,kernel_initializer = 'glorot_uniform', activation = 'relu'))
classifier.add(Dropout(rate=0.1))
#Adding the output layer
classifier.add(Dense(units = 1,kernel_initializer = 'glorot_uniform', activation = 'sigmoid'))
#Compiling the ANN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
#Fitting the ANN to the Training set
classifier.fit(X_train, y_train, batch_size = 10, epochs = 100)
#Part 3 - Making the predictions and evaluating the model
# Predicting the Test set results
y_pred = classifier.predict(X_test)
y_pred = (y_pred > 0.5)
#Predicting a single new observation
"""Predict if the customer with the following information will leave the bank:
Geography: France
Credit Score: 600
Gender: Male
Age: 40
Tenure: 3
Balance: 60000
Number of Products: 2
Has Credit Card: Yes
Is Active Member: Yes
Estimated Salary: 50000"""
new_prediction = classifier.predict(sc.transform(np.array([[0.0,0,600,1,40,3,60000,2,1,1,50000]])))
new_prediction = (new_prediction > 0.5)
# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
#Part 4 - Evaluating, Improving and Tuning the ANN
#Evaluating the ANN
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score
from keras.models import Sequential
from keras.layers import Dense
def build_classifier():
classifier = Sequential()
classifier.add(Dense(units = 6,kernel_initializer = 'glorot_uniform', activation = 'relu', input_dim = 11))
classifier.add(Dense(units = 6,kernel_initializer = 'glorot_uniform', activation = 'relu'))
classifier.add(Dense(units = 1,kernel_initializer = 'glorot_uniform', activation = 'sigmoid'))
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
return classifier
classifier = KerasClassifier(build_fn = build_classifier, batch_size = 10, epochs = 100)
accuracies = cross_val_score(estimator = classifier, X = X_train, y = y_train, cv = 10, n_jobs = 1)
mean = accuracies.mean()
variance = accuracies.std()
#Improving the ANN
# Dropout regularization to reduce overfitting if needed
#Tuning the ANN
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import GridSearchCV
from keras.models import Sequential
from keras.layers import Dense
def build_classifier(optimizer):
classifier = Sequential()
classifier.add(Dense(units = 6,kernel_initializer = 'glorot_uniform', activation = 'relu', input_dim = 11))
classifier.add(Dense(units = 6,kernel_initializer = 'glorot_uniform', activation = 'relu'))
classifier.add(Dense(units = 1,kernel_initializer = 'glorot_uniform', activation = 'sigmoid'))
classifier.compile(optimizer = optimizer, loss = 'binary_crossentropy', metrics = ['accuracy'])
return classifier
classifier = KerasClassifier(build_fn = build_classifier)
parameters = {'batch_size' : [25, 32],
'epochs' : [100, 500],
'optimizer' : ['adam', 'rmsprop']}
grid_search = GridSearchCV(estimator = classifier, param_grid = parameters, scoring = 'accuracy', cv = 10)
grid_search = grid_search.fit(X_train, y_train)
best_parameters = grid_search.best_params_
best_accuracy = grid_search.best_score_