forked from nianticlabs/monodepth2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate_depth.py
272 lines (204 loc) · 9.74 KB
/
evaluate_depth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
from __future__ import absolute_import, division, print_function
import os
import cv2
import numpy as np
import torch
from torch.utils.data import DataLoader
from layers import disp_to_depth
from utils import readlines
from options import MonodepthOptions
import datasets
import networks
import json
import panoptic_decoder
import networks_lite
cv2.setNumThreads(0) # This speeds up evaluation 5x on our unix systems (OpenCV 3.3.1)
splits_dir = os.path.join(os.path.dirname(__file__), "splits")
# Models which were trained with stereo supervision were trained with a nominal
# baseline of 0.1 units. The KITTI rig has a baseline of 54cm. Therefore,
# to convert our stereo predictions to real-world scale we multiply our depths by 5.4.
STEREO_SCALE_FACTOR = 5.4
def compute_errors(gt, pred):
"""Computation of error metrics between predicted and ground truth depths
"""
thresh = np.maximum((gt / pred), (pred / gt))
a1 = (thresh < 1.25 ).mean()
a2 = (thresh < 1.25 ** 2).mean()
a3 = (thresh < 1.25 ** 3).mean()
rmse = (gt - pred) ** 2
rmse = np.sqrt(rmse.mean())
rmse_log = (np.log(gt) - np.log(pred)) ** 2
rmse_log = np.sqrt(rmse_log.mean())
abs_rel = np.mean(np.abs(gt - pred) / gt)
sq_rel = np.mean(((gt - pred) ** 2) / gt)
return abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3
def batch_post_process_disparity(l_disp, r_disp):
"""Apply the disparity post-processing method as introduced in Monodepthv1
"""
_, h, w = l_disp.shape
m_disp = 0.5 * (l_disp + r_disp)
l, _ = np.meshgrid(np.linspace(0, 1, w), np.linspace(0, 1, h))
l_mask = (1.0 - np.clip(20 * (l - 0.05), 0, 1))[None, ...]
r_mask = l_mask[:, :, ::-1]
return r_mask * l_disp + l_mask * r_disp + (1.0 - l_mask - r_mask) * m_disp
def evaluate(opt):
"""Evaluates a pretrained model using a specified test set
"""
if opt.ddad:
MIN_DEPTH = 1e-3
MAX_DEPTH = 200
else:
MIN_DEPTH = 1e-3
MAX_DEPTH = 80
assert sum((opt.eval_mono, opt.eval_stereo)) == 1, \
"Please choose mono or stereo evaluation by setting either --eval_mono or --eval_stereo"
if opt.ext_disp_to_eval is None:
opt.load_weights_folder = os.path.expanduser(opt.load_weights_folder)
assert os.path.isdir(opt.load_weights_folder), \
"Cannot find a folder at {}".format(opt.load_weights_folder)
print("-> Loading weights from {}".format(opt.load_weights_folder))
filenames = readlines(os.path.join(splits_dir, opt.eval_split, "test_files.txt"))
encoder_path = os.path.join(opt.load_weights_folder, "encoder.pth")
decoder_path = os.path.join(opt.load_weights_folder, "depth.pth")
encoder_dict = torch.load(encoder_path)
if opt.ddad:
dataset=datasets.DGPDataset(data_path=opt.json_path, split='val',
height=opt.height, width=opt.width,
frame_idxs=opt.frame_ids, num_scales=4, datum_names=['lidar','CAMERA_01'],
back_context=1, forward_context=1)
else:
dataset = datasets.KITTIRAWDataset(opt.data_path, filenames,
encoder_dict['height'], encoder_dict['width'],
[0], 4, is_train=False)
dataloader = DataLoader(dataset, 16, shuffle=False, num_workers=opt.num_workers,
pin_memory=True, drop_last=False)
if opt.lite:
encoder = networks_lite.LiteMono(block_size=tuple(opt.block_size),
grid_size=tuple(opt.grid_size),
residual=opt.res,
global_block_type=[opt.global_block_type for i in range(3)])
else:
encoder = networks.ResnetEncoder(opt.num_layers, False)
if opt.panoptic_decoder:
with open(opt.panoptic_option_pth) as f:
panoptic_opt=json.load(f)
depth_decoder=panoptic_decoder.SinglePanopticDeepLabDecoder_bj(
**panoptic_opt
)
elif opt.lite:
depth_decoder=networks_lite.DepthDecoder(encoder.num_ch_enc, [0,1,2])
else:
depth_decoder = networks.DepthDecoder(encoder.num_ch_enc)
model_dict = encoder.state_dict()
encoder.load_state_dict({k: v for k, v in encoder_dict.items() if k in model_dict})
depth_decoder.load_state_dict(torch.load(decoder_path))
encoder.cuda()
encoder.eval()
depth_decoder.cuda()
depth_decoder.eval()
pred_disps = []
print("-> Computing predictions with size {}x{}".format(
encoder_dict['width'], encoder_dict['height']))
with torch.no_grad():
for data in dataloader:
input_color = data[("color", 0, 0)].cuda()
if opt.post_process:
# Post-processed results require each image to have two forward passes
input_color = torch.cat((input_color, torch.flip(input_color, [3])), 0)
if opt.lite:
output,_ = depth_decoder(encoder(input_color))
else:
output = depth_decoder(encoder(input_color))
pred_disp, _ = disp_to_depth(output[("disp", 0)], opt.min_depth, opt.max_depth)
# pred_disp = output[("disp", 0)]
pred_disp = pred_disp.cpu()[:, 0].numpy()
if opt.post_process:
N = pred_disp.shape[0] // 2
pred_disp = batch_post_process_disparity(pred_disp[:N], pred_disp[N:, :, ::-1])
pred_disps.append(pred_disp)
pred_disps = np.concatenate(pred_disps)
else:
# Load predictions from file
print("-> Loading predictions from {}".format(opt.ext_disp_to_eval))
pred_disps = np.load(opt.ext_disp_to_eval)
if opt.eval_eigen_to_benchmark:
eigen_to_benchmark_ids = np.load(
os.path.join(splits_dir, "benchmark", "eigen_to_benchmark_ids.npy"))
pred_disps = pred_disps[eigen_to_benchmark_ids]
if opt.save_pred_disps:
output_path = os.path.join(
opt.load_weights_folder, "disps_{}_split.npy".format(opt.eval_split))
print("-> Saving predicted disparities to ", output_path)
np.save(output_path, pred_disps)
if opt.no_eval:
print("-> Evaluation disabled. Done.")
quit()
elif opt.eval_split == 'benchmark':
save_dir = os.path.join(opt.load_weights_folder, "benchmark_predictions")
print("-> Saving out benchmark predictions to {}".format(save_dir))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
for idx in range(len(pred_disps)):
disp_resized = cv2.resize(pred_disps[idx], (1216, 352))
depth = STEREO_SCALE_FACTOR / disp_resized
depth = np.clip(depth, 0, 80)
depth = np.uint16(depth * 256)
save_path = os.path.join(save_dir, "{:010d}.png".format(idx))
cv2.imwrite(save_path, depth)
print("-> No ground truth is available for the KITTI benchmark, so not evaluating. Done.")
quit()
if opt.ddad:
gt_path=opt.ddad_gt_path
gt_depths = np.load(gt_path, fix_imports=True, encoding='latin1', allow_pickle=True)["data"]
else:
gt_path = os.path.join(splits_dir, opt.eval_split, "gt_depths.npz")
gt_depths = np.load(gt_path, fix_imports=True, encoding='latin1',allow_pickle=True)["data"]
print("-> Evaluating")
if opt.eval_stereo:
print(" Stereo evaluation - "
"disabling median scaling, scaling by {}".format(STEREO_SCALE_FACTOR))
opt.disable_median_scaling = True
opt.pred_depth_scale_factor = STEREO_SCALE_FACTOR
else:
print(" Mono evaluation - using median scaling")
errors = []
ratios = []
for i in range(pred_disps.shape[0]):
gt_depth = gt_depths[i]
gt_height, gt_width = gt_depth.shape[:2]
pred_disp = pred_disps[i]
pred_disp = cv2.resize(pred_disp, (gt_width, gt_height))
pred_depth = 1 / pred_disp
if opt.eval_split == "eigen":
if not opt.ddad:
mask = np.logical_and(gt_depth > MIN_DEPTH, gt_depth < MAX_DEPTH)
crop = np.array([0.40810811 * gt_height, 0.99189189 * gt_height,
0.03594771 * gt_width, 0.96405229 * gt_width]).astype(np.int32)
crop_mask = np.zeros(mask.shape)
crop_mask[crop[0]:crop[1], crop[2]:crop[3]] = 1
mask = np.logical_and(mask, crop_mask)
else:
mask=gt_depth>0
else:
mask = gt_depth > 0
pred_depth = pred_depth[mask]
gt_depth = gt_depth[mask]
pred_depth *= opt.pred_depth_scale_factor
if not opt.disable_median_scaling:
ratio = np.median(gt_depth) / np.median(pred_depth)
ratios.append(ratio)
pred_depth *= ratio
pred_depth[pred_depth < MIN_DEPTH] = MIN_DEPTH
pred_depth[pred_depth > MAX_DEPTH] = MAX_DEPTH
errors.append(compute_errors(gt_depth, pred_depth))
if not opt.disable_median_scaling:
ratios = np.array(ratios)
med = np.median(ratios)
print(" Scaling ratios | med: {:0.3f} | std: {:0.3f}".format(med, np.std(ratios / med)))
mean_errors = np.array(errors).mean(0)
print("\n " + ("{:>8} | " * 7).format("abs_rel", "sq_rel", "rmse", "rmse_log", "a1", "a2", "a3"))
print(("&{: 8.3f} " * 7).format(*mean_errors.tolist()) + "\\\\")
print("\n-> Done!")
if __name__ == "__main__":
options = MonodepthOptions()
evaluate(options.parse())