-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSimNW.py
68 lines (61 loc) · 2.67 KB
/
SimNW.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import numpy as np
import matplotlib.pyplot as plt
Time = np.arange(34, dtype=np.float)
Years = Time + 2016
StockBal = 1000.
StockOSM = 5000.
StockPol = 500.
StockDro = 200.
RateBal = 4*365.25
RateOSM = 3*365.25
RatePol = 2*365.25
RateDro = 1*365.25
BCBal = 1000.
BCOSM = 600.
BCPol = 200.
BCDro = 200.
MassBal, MassOSM, MassPol,MassDro =np.zeros(len(Time)), np.zeros(len(Time)), np.zeros(len(Time)), np.zeros(len(Time))
CleanBal, CleanOSM, CleanPol, CleanDro = np.zeros((3,len(Time))), np.zeros((3,len(Time))), np.zeros((3,len(Time))), np.zeros((3,len(Time)))
MassBal = Time*RateBal
MassOSM = Time*RateOSM
MassPol = Time*RatePol
MassDro = Time*RateDro
for mass in [MassBal, MassOSM, MassPol,MassDro]:
mass[2:] *=2 #Doubling of rates in 2019
mass[5:] *=1.5 #TotalAramco factory
MassBal += StockBal
MassOSM += StockOSM
MassPol += StockPol
MassDro += StockDro
CleanBal[1] += BCBal
CleanOSM[1] += BCOSM
CleanPol[1] += BCPol
CleanDro[1] += BCDro
CleanBal[2] += BCBal+3000
CleanOSM[2] += BCOSM+2500
CleanPol[2] += BCPol+1500
CleanDro[2] += BCDro+500
plt.xkcd()
Width = 0.5
Fig, ax = plt.subplots(1,3)
Fig.suptitle('Major plastic accumulations in Plastic@Bay area')
for i, ax in enumerate(Fig.axes):
ax.bar(Years, MassBal-CleanBal[i,:].cumsum(), Width, label='Balnakeil' )
ax.bar(Years, MassOSM-CleanOSM[i,:].cumsum(), Width, bottom=MassBal-CleanBal[i,:].cumsum(), label='Oldshoremore' )
ax.bar(Years, MassPol-CleanPol[i,:].cumsum(), Width, bottom=MassBal-CleanBal[i,:].cumsum() + MassOSM-CleanOSM[i,:].cumsum(), label ='Polin' )
ax.bar(Years, MassDro-CleanDro[i,:].cumsum(), Width, bottom=MassBal-CleanBal[i,:].cumsum() + MassOSM-CleanOSM[i,:].cumsum() + MassPol-CleanPol[i,:].cumsum(), label ='Droman')
ax.set_xlabel('Years')
ax.set_ylabel('Volume in kg')
ax.set_ylim(0,250000)
##plt.annotate(
## 'Doubling of production\n with Shell and Exxon\nsuperfactories',
## xy=(Years[3], ScenarNYT_ShellExxon[3]), arrowprops=dict(arrowstyle='->'), xytext=(2014, 2.5e13), fontsize=10)
##plt.annotate(
## 'Total and Saudi\nAramco superfactory',
## xy=(Years[5], ScenarNYT_ShellExxon_TotSaudi[5]), arrowprops=dict(arrowstyle='->'), xytext=(2023, 3.5e13), fontsize=10)
ax.legend()
Fig.axes[0].set_title('Projections with no Beachclean\nEstimates from Plastic@Bay surveys\nBaln +1.5 t/y, OSM +1 t/y, Polin +0.7 t/y, Drom +0.2 t/y')
Fig.axes[1].set_title('Projections with current\nCommunity-led beachcleans (seasonal)\nBaln -1t/y, OSM -0.6 t/y, Polin -0.2 t/y, Drom -0.2 t/y')
Fig.axes[2].set_title('Projections with Community-led beachcleans\n+ Plastic@bay ranger\nBaln -4t/y, OSM -3.1 t/y, Polin -1.7 t/y, Drom -0.7 t/y')
#Fig.tight_layout()
plt.show()