diff --git a/AXP192.cpp b/AXP192.cpp new file mode 100644 index 00000000..1260d4da --- /dev/null +++ b/AXP192.cpp @@ -0,0 +1,440 @@ +#include "AXP192.h" + +AXP192::AXP192() { +} + +void AXP192::begin(void) { + Wire1.begin(21, 22); + Wire1.setClock(400000); + + // Set LDO2 & LDO3(TFT_LED & TFT) 3.0V + Write1Byte(0x28, 0xcc); + + // Set ADC to All Enable + Write1Byte(0x82, 0xff); + + // Bat charge voltage to 4.2, Current 100MA + Write1Byte(0x33, 0xc0); + + // Enable Bat,ACIN,VBUS,APS adc + Write1Byte(0x82, 0xff); + + // Enable Ext, LDO2, LDO3, DCDC1 + Write1Byte(0x12, Read8bit(0x12) | 0x4D); + + // 128ms power on, 4s power off + Write1Byte(0x36, 0x0C); + + // Set RTC voltage to 3.3V + Write1Byte(0x91, 0xF0); + + // Set GPIO0 to LDO + Write1Byte(0x90, 0x02); + + // Disable vbus hold limit + Write1Byte(0x30, 0x80); + + // Set temperature protection + Write1Byte(0x39, 0xfc); + + // Enable RTC BAT charge + Write1Byte(0x35, 0xa2); + + // Enable bat detection + Write1Byte(0x32, 0x46); + + // ScreenBreath(80); +} + +void AXP192::Write1Byte(uint8_t Addr, uint8_t Data) { + Wire1.beginTransmission(0x34); + Wire1.write(Addr); + Wire1.write(Data); + Wire1.endTransmission(); +} + +uint8_t AXP192::Read8bit(uint8_t Addr) { + Wire1.beginTransmission(0x34); + Wire1.write(Addr); + Wire1.endTransmission(); + Wire1.requestFrom(0x34, 1); + return Wire1.read(); +} + +uint16_t AXP192::Read12Bit(uint8_t Addr) { + uint16_t Data = 0; + uint8_t buf[2]; + ReadBuff(Addr, 2, buf); + Data = ((buf[0] << 4) + buf[1]); // + return Data; +} + +uint16_t AXP192::Read13Bit(uint8_t Addr) { + uint16_t Data = 0; + uint8_t buf[2]; + ReadBuff(Addr, 2, buf); + Data = ((buf[0] << 5) + buf[1]); // + return Data; +} + +uint16_t AXP192::Read16bit(uint8_t Addr) { + uint16_t ReData = 0; + Wire1.beginTransmission(0x34); + Wire1.write(Addr); + Wire1.endTransmission(); + Wire1.requestFrom(0x34, 2); + for (int i = 0; i < 2; i++) { + ReData <<= 8; + ReData |= Wire1.read(); + } + return ReData; +} + +uint32_t AXP192::Read24bit(uint8_t Addr) { + uint32_t ReData = 0; + Wire1.beginTransmission(0x34); + Wire1.write(Addr); + Wire1.endTransmission(); + Wire1.requestFrom(0x34, 3); + for (int i = 0; i < 3; i++) { + ReData <<= 8; + ReData |= Wire1.read(); + } + return ReData; +} + +uint32_t AXP192::Read32bit(uint8_t Addr) { + uint32_t ReData = 0; + Wire1.beginTransmission(0x34); + Wire1.write(Addr); + Wire1.endTransmission(); + Wire1.requestFrom(0x34, 4); + for (int i = 0; i < 4; i++) { + ReData <<= 8; + ReData |= Wire1.read(); + } + return ReData; +} + +void AXP192::ReadBuff(uint8_t Addr, uint8_t Size, uint8_t *Buff) { + Wire1.beginTransmission(0x34); + Wire1.write(Addr); + Wire1.endTransmission(); + Wire1.requestFrom(0x34, (int)Size); + for (int i = 0; i < Size; i++) { + *(Buff + i) = Wire1.read(); + } +} + +void AXP192::ScreenBreath(int brightness) { + if (brightness > 100 || brightness < 0) return; + int vol = map(brightness, 0, 100, 2500, 3200); + vol = (vol < 1800) ? 0 : (vol - 1800) / 100; + uint8_t buf = Read8bit(0x28); + Write1Byte(0x28, ((buf & 0x0f) | ((uint16_t)vol << 4))); +} + +void AXP192::ScreenSwitch(bool state) { + uint8_t brightness; + if (state == false) { + brightness = 0; + } else if (state == true) { + brightness = 12; + } + uint8_t buf = Read8bit(0x28); + Write1Byte(0x28, ((buf & 0x0f) | (brightness << 4))); +} + +bool AXP192::GetBatState() { + if (Read8bit(0x01) | 0x20) + return true; + else + return false; +} +//---------coulombcounter_from_here--------- +// enable: void EnableCoulombcounter(void); +// disable: void DisableCOulombcounter(void); +// stop: void StopCoulombcounter(void); +// clear: void ClearCoulombcounter(void); +// get charge data: uint32_t GetCoulombchargeData(void); +// get discharge data: uint32_t GetCoulombdischargeData(void); +// get coulomb val affter calculation: float GetCoulombData(void); +//------------------------------------------ +void AXP192::EnableCoulombcounter(void) { + Write1Byte(0xB8, 0x80); +} + +void AXP192::DisableCoulombcounter(void) { + Write1Byte(0xB8, 0x00); +} + +void AXP192::StopCoulombcounter(void) { + Write1Byte(0xB8, 0xC0); +} + +void AXP192::ClearCoulombcounter(void) { + Write1Byte(0xB8, 0xA0); +} + +uint32_t AXP192::GetCoulombchargeData(void) { + return Read32bit(0xB0); +} + +uint32_t AXP192::GetCoulombdischargeData(void) { + return Read32bit(0xB4); +} + +float AXP192::GetCoulombData(void) { + uint32_t coin = 0; + uint32_t coout = 0; + + coin = GetCoulombchargeData(); + coout = GetCoulombdischargeData(); + + // c = 65536 * current_LSB * (coin - coout) / 3600 / ADC rate + // Adc rate can be read from 84H ,change this variable if you change the ADC + // reate + float ccc = 65536 * 0.5 * (int32_t)(coin - coout) / 3600.0 / 25.0; + + return ccc; +} +//----------coulomb_end_at_here---------- + +uint16_t AXP192::GetVbatData(void) { + uint16_t vbat = 0; + uint8_t buf[2]; + ReadBuff(0x78, 2, buf); + vbat = ((buf[0] << 4) + buf[1]); // V + return vbat; +} + +uint16_t AXP192::GetVinData(void) { + uint16_t vin = 0; + uint8_t buf[2]; + ReadBuff(0x56, 2, buf); + vin = ((buf[0] << 4) + buf[1]); // V + return vin; +} + +uint16_t AXP192::GetIinData(void) { + uint16_t iin = 0; + uint8_t buf[2]; + ReadBuff(0x58, 2, buf); + iin = ((buf[0] << 4) + buf[1]); + return iin; +} + +uint16_t AXP192::GetVusbinData(void) { + uint16_t vin = 0; + uint8_t buf[2]; + ReadBuff(0x5a, 2, buf); + vin = ((buf[0] << 4) + buf[1]); // V + return vin; +} + +uint16_t AXP192::GetIusbinData(void) { + uint16_t iin = 0; + uint8_t buf[2]; + ReadBuff(0x5C, 2, buf); + iin = ((buf[0] << 4) + buf[1]); + return iin; +} + +uint16_t AXP192::GetIchargeData(void) { + uint16_t icharge = 0; + uint8_t buf[2]; + ReadBuff(0x7A, 2, buf); + icharge = (buf[0] << 5) + buf[1]; + return icharge; +} + +uint16_t AXP192::GetIdischargeData(void) { + uint16_t idischarge = 0; + uint8_t buf[2]; + ReadBuff(0x7C, 2, buf); + idischarge = (buf[0] << 5) + buf[1]; + return idischarge; +} + +uint16_t AXP192::GetTempData(void) { + uint16_t temp = 0; + uint8_t buf[2]; + ReadBuff(0x5e, 2, buf); + temp = ((buf[0] << 4) + buf[1]); + return temp; +} + +uint32_t AXP192::GetPowerbatData(void) { + uint32_t power = 0; + uint8_t buf[3]; + ReadBuff(0x70, 2, buf); + power = (buf[0] << 16) + (buf[1] << 8) + buf[2]; + return power; +} + +uint16_t AXP192::GetVapsData(void) { + uint16_t vaps = 0; + uint8_t buf[2]; + ReadBuff(0x7e, 2, buf); + vaps = ((buf[0] << 4) + buf[1]); + return vaps; +} + +void AXP192::SetSleep(void) { + Write1Byte(0x31, Read8bit(0x31) | (1 << 3)); + Write1Byte(0x90, 0x00); // GPIO0 voltage 0 + Write1Byte(0x12, 0x09); // CDC1, LDO3 + Write1Byte(0x12, Read8bit(0x12) & 0xA1); // Disable all outputs but DCDC1 +} + +void AXP192::WakeUpDisplayAfterLightSleep(void) { + // LDO2 is LCD Backlight + // LDO3 is LCD Power + // Enable Ext, LDO3, LDO2, DCDC1 + Write1Byte(0x12, Read8bit(0x12) | 0x4D); +} + +uint8_t AXP192::GetWarningLeve(void) { + Wire1.beginTransmission(0x34); + Wire1.write(0x47); + Wire1.endTransmission(); + Wire1.requestFrom(0x34, 1); + uint8_t buf = Wire1.read(); + return (buf & 0x01); +} + +// -- sleep +void AXP192::DeepSleep(uint64_t time_in_us) { + SetSleep(); + + if (time_in_us > 0) { + esp_sleep_enable_timer_wakeup(time_in_us); + } else { + esp_sleep_disable_wakeup_source(ESP_SLEEP_WAKEUP_TIMER); + } + (time_in_us == 0) ? esp_deep_sleep_start() : esp_deep_sleep(time_in_us); +} + +void AXP192::LightSleep(uint64_t time_in_us) { + SetSleep(); + + if (time_in_us > 0) { + esp_sleep_enable_timer_wakeup(time_in_us); + } else { + esp_sleep_disable_wakeup_source(ESP_SLEEP_WAKEUP_TIMER); + } + esp_light_sleep_start(); + WakeUpDisplayAfterLightSleep(); +} + +// 0 not press, 0x01 long press, 0x02 press +uint8_t AXP192::GetBtnPress() { + uint8_t state = Read8bit(0x46); + if (state) { + Write1Byte(0x46, 0x03); + } + return state; +} + +uint8_t AXP192::GetWarningLevel(void) { + return Read8bit(0x47) & 0x01; +} + +float AXP192::GetBatVoltage() { + float ADCLSB = 1.1 / 1000.0; + uint16_t ReData = Read12Bit(0x78); + return ReData * ADCLSB; +} + +float AXP192::GetBatCurrent() { + float ADCLSB = 0.5; + uint16_t CurrentIn = Read13Bit(0x7A); + uint16_t CurrentOut = Read13Bit(0x7C); + return (CurrentIn - CurrentOut) * ADCLSB; +} + +float AXP192::GetVinVoltage() { + float ADCLSB = 1.7 / 1000.0; + uint16_t ReData = Read12Bit(0x56); + return ReData * ADCLSB; +} + +float AXP192::GetVinCurrent() { + float ADCLSB = 0.625; + uint16_t ReData = Read12Bit(0x58); + return ReData * ADCLSB; +} + +float AXP192::GetVBusVoltage() { + float ADCLSB = 1.7 / 1000.0; + uint16_t ReData = Read12Bit(0x5A); + return ReData * ADCLSB; +} + +float AXP192::GetVBusCurrent() { + float ADCLSB = 0.375; + uint16_t ReData = Read12Bit(0x5C); + return ReData * ADCLSB; +} + +float AXP192::GetTempInAXP192() { + float ADCLSB = 0.1; + const float OFFSET_DEG_C = -144.7; + uint16_t ReData = Read12Bit(0x5E); + return OFFSET_DEG_C + ReData * ADCLSB; +} + +float AXP192::GetBatPower() { + float VoltageLSB = 1.1; + float CurrentLCS = 0.5; + uint32_t ReData = Read24bit(0x70); + return VoltageLSB * CurrentLCS * ReData / 1000.0; +} + +float AXP192::GetBatChargeCurrent() { + float ADCLSB = 0.5; + uint16_t ReData = Read12Bit(0x7A); + return ReData * ADCLSB; +} +float AXP192::GetAPSVoltage() { + float ADCLSB = 1.4 / 1000.0; + uint16_t ReData = Read12Bit(0x7E); + return ReData * ADCLSB; +} + +float AXP192::GetBatCoulombInput() { + uint32_t ReData = Read32bit(0xB0); + return ReData * 65536 * 0.5 / 3600 / 25.0; +} + +float AXP192::GetBatCoulombOut() { + uint32_t ReData = Read32bit(0xB4); + return ReData * 65536 * 0.5 / 3600 / 25.0; +} + +void AXP192::SetCoulombClear() { + Write1Byte(0xB8, 0x20); +} + +void AXP192::SetLDO2(bool State) { + uint8_t buf = Read8bit(0x12); + if (State == true) + buf = (1 << 2) | buf; + else + buf = ~(1 << 2) & buf; + Write1Byte(0x12, buf); +} + +// Cut all power, except for LDO1 (RTC) +void AXP192::PowerOff() { + Write1Byte(0x32, Read8bit(0x32) | 0x80); // MSB for Power Off +} + +void AXP192::SetPeripherialsPower(uint8_t state) { + if (!state) + Write1Byte(0x10, Read8bit(0x10) & 0XFB); + else if (state) + Write1Byte(0x10, Read8bit(0x10) | 0X04); + // uint8_t data; + // Set EXTEN to enable 5v boost +} \ No newline at end of file diff --git a/AXP192.h b/AXP192.h new file mode 100644 index 00000000..f7d09123 --- /dev/null +++ b/AXP192.h @@ -0,0 +1,82 @@ +#ifndef __AXP192_H__ +#define __AXP192_H__ + +#include +#include + +#define SLEEP_MSEC(us) (((uint64_t)us) * 1000L) +#define SLEEP_SEC(us) (((uint64_t)us) * 1000000L) +#define SLEEP_MIN(us) (((uint64_t)us) * 60L * 1000000L) +#define SLEEP_HR(us) (((uint64_t)us) * 60L * 60L * 1000000L) + +class AXP192 { + public: + AXP192(); + void begin(void); + void ScreenBreath(int brightness); + void ScreenSwitch(bool state); + + bool GetBatState(); + + void EnableCoulombcounter(void); + void DisableCoulombcounter(void); + void StopCoulombcounter(void); + void ClearCoulombcounter(void); + uint32_t GetCoulombchargeData(void); + uint32_t GetCoulombdischargeData(void); + float GetCoulombData(void); + + uint16_t GetVbatData(void) __attribute__((deprecated)); + uint16_t GetIchargeData(void) __attribute__((deprecated)); + uint16_t GetIdischargeData(void) __attribute__((deprecated)); + uint16_t GetTempData(void) __attribute__((deprecated)); + uint32_t GetPowerbatData(void) __attribute__((deprecated)); + uint16_t GetVinData(void) __attribute__((deprecated)); + uint16_t GetIinData(void) __attribute__((deprecated)); + uint16_t GetVusbinData(void) __attribute__((deprecated)); + uint16_t GetIusbinData(void) __attribute__((deprecated)); + uint16_t GetVapsData(void) __attribute__((deprecated)); + uint8_t GetBtnPress(void); + + // -- sleep + void SetSleep(void); + void WakeUpDisplayAfterLightSleep(void); + void DeepSleep(uint64_t time_in_us = 0); + void LightSleep(uint64_t time_in_us = 0); + uint8_t GetWarningLeve(void); + + public: + // void SetChargeVoltage( uint8_t ); + // void SetChargeCurrent( uint8_t ); + float GetBatVoltage(); + float GetBatCurrent(); + float GetVinVoltage(); + float GetVinCurrent(); + float GetVBusVoltage(); + float GetVBusCurrent(); + float GetTempInAXP192(); + float GetBatPower(); + float GetBatChargeCurrent(); + float GetAPSVoltage(); + float GetBatCoulombInput(); + float GetBatCoulombOut(); + uint8_t GetWarningLevel(void); + void SetCoulombClear(); + void SetLDO2(bool State); + void SetPeripherialsPower(uint8_t state); + + // -- Power Off + void PowerOff(); + + public: + void Write1Byte(uint8_t Addr, uint8_t Data); + uint8_t Read8bit(uint8_t Addr); + uint16_t Read12Bit(uint8_t Addr); + uint16_t Read13Bit(uint8_t Addr); + uint16_t Read16bit(uint8_t Addr); + uint32_t Read24bit(uint8_t Addr); + uint32_t Read32bit(uint8_t Addr); + void ReadBuff(uint8_t Addr, uint8_t Size, uint8_t *Buff); +}; + +#endif diff --git a/User_Setup_Select.h b/User_Setup_Select.h index 6a516399..1caff10d 100644 --- a/User_Setup_Select.h +++ b/User_Setup_Select.h @@ -156,6 +156,12 @@ //#include // Setup file for Dustin Watts PCB with ST7789 240 x 240 on 3.3V adapter board //#include // Setup file for Dustin Watts PCB with ILI9341 //#include +//uncomment for M5stickc +//#include "AXP192.h" +//M5stickC +//#include +//M5stickCPlus +//#include #endif // USER_SETUP_LOADED diff --git a/User_Setups/Setup_M5stickc.h b/User_Setups/Setup_M5stickc.h new file mode 100644 index 00000000..1a98412a --- /dev/null +++ b/User_Setups/Setup_M5stickc.h @@ -0,0 +1,305 @@ +// USER DEFINED SETTINGS +// Set driver type, fonts to be loaded, pins used and SPI control method etc +// +// See the User_Setup_Select.h file if you wish to be able to define multiple +// setups and then easily select which setup file is used by the compiler. +// +// If this file is edited correctly then all the library example sketches +// should run without the need to make any more changes for a particular +// hardware setup! Note that some sketches are designed for a particular TFT +// pixel width/height + +// ################################################################################## +// +// Section 1. Call up the right driver file and any options for it +// +// ################################################################################## +#include "ST7735_Defines.h" +// Only define one driver, the other ones must be commented out +//#define ILI9341_DRIVER +#define ST7735_DRIVER // Define additional parameters below for this display +//#define ILI9163_DRIVER // Define additional parameters below for this +// display #define S6D02A1_DRIVER #define RPI_ILI9486_DRIVER // 20MHz maximum +// SPI #define HX8357D_DRIVER #define ILI9481_DRIVER #define ILI9486_DRIVER +//#define ILI9488_DRIVER // WARNING: Do not connect ILI9488 display SDO to +// MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is +// high) #define ST7789_DRIVER // Full configuration option, define +// additional parameters below for this display #define ST7789_2_DRIVER // +// Minimal configuration option, define additional parameters below for this +// display #define R61581_DRIVER #define RM68140_DRIVER + +#define TFT_DRIVER 0x7735 +// Some displays support SPI reads via the MISO pin, other displays have a +// single bi-directional SDA pin and the library will try to read this via the +// MOSI line. To use the SDA line for reading data from the TFT uncomment the +// following line: + +// #define TFT_SDA_READ // This option is for ESP32 ONLY, tested with +// ST7789 display only + +// For ST7789 and ILI9341 ONLY, define the colour order IF the blue and red are +// swapped on your display Try ONE option at a time to find the correct colour +// order for your display + +// #define TFT_RGB_ORDER TFT_RGB // Colour order Red-Green-Blue +// #define TFT_RGB_ORDER TFT_BGR // Colour order Blue-Green-Red + +// For M5Stack ESP32 module with integrated ILI9341 display ONLY, remove // in +// line below + +// #define M5STACK + +// For ST7789, ST7735 and ILI9163 ONLY, define the pixel width and height in +// portrait orientation +#define TFT_WIDTH 80 +// #define TFT_WIDTH 128 +// #define TFT_WIDTH 240 // ST7789 240 x 240 and 240 x 320 +#define TFT_HEIGHT 160 +// #define TFT_HEIGHT 128 +// #define TFT_HEIGHT 240 // ST7789 240 x 240 +// #define TFT_HEIGHT 320 // ST7789 240 x 320 + +// For ST7735 ONLY, define the type of display, originally this was based on the +// colour of the tab on the screen protector film but this is not always true, +// so try out the different options below if the screen does not display +// graphics correctly, e.g. colours wrong, mirror images, or tray pixels at the +// edges. Comment out ALL BUT ONE of these options for a ST7735 display driver, +// save this this User_Setup file, then rebuild and upload the sketch to the +// board again: + +// #define ST7735_INITB +// #define ST7735_GREENTAB +// #define ST7735_GREENTAB2 +// #define ST7735_GREENTAB3 +// #define ST7735_GREENTAB128 // For 128 x 128 display +// #define ST7735_GREENTAB160x80 // For 160 x 80 display (BGR, inverted, 26 +// offset) #define ST7735_REDTAB #define ST7735_BLACKTAB #define +// ST7735_REDTAB160x80 // For 160 x 80 display with 24 pixel offset + +// If colours are inverted (white shows as black) then uncomment one of the next +// 2 lines try both options, one of the options should correct the inversion. + +// #define TFT_INVERSION_ON +// #define TFT_INVERSION_OFF + +// If a backlight control signal is available then define the TFT_BL pin in +// Section 2 below. The backlight will be turned ON when tft.begin() is called, +// but the library needs to know if the LEDs are ON with the pin HIGH or LOW. If +// the LEDs are to be driven with a PWM signal or turned OFF/ON then this must +// be handled by the user sketch. e.g. with digitalWrite(TFT_BL, LOW); + +// #define TFT_BACKLIGHT_ON HIGH // HIGH or LOW are options + +// ################################################################################## +// +// Section 2. Define the pins that are used to interface with the display here +// +// ################################################################################## + +// We must use hardware SPI, a minimum of 3 GPIO pins is needed. +// Typical setup for ESP8266 NodeMCU ESP-12 is : +// +// Display SDO/MISO to NodeMCU pin D6 (or leave disconnected if not reading +// TFT) Display LED to NodeMCU pin VIN (or 5V, see below) Display SCK to +// NodeMCU pin D5 Display SDI/MOSI to NodeMCU pin D7 Display DC (RS/AO)to +// NodeMCU pin D3 Display RESET to NodeMCU pin D4 (or RST, see below) +// Display CS to NodeMCU pin D8 (or GND, see below) +// Display GND to NodeMCU pin GND (0V) +// Display VCC to NodeMCU 5V or 3.3V +// +// The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up +// a control pin +// +// The DC (Data Command) pin may be labeled AO or RS (Register Select) +// +// With some displays such as the ILI9341 the TFT CS pin can be connected to GND +// if no more SPI devices (e.g. an SD Card) are connected, in this case comment +// out the #define TFT_CS line below so it is NOT defined. Other displays such +// at the ST7735 require the TFT CS pin to be toggled during setup, so in these +// cases the TFT_CS line must be defined and connected. +// +// The NodeMCU D0 pin can be used for RST +// +// +// Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin +// If 5V is not available at a pin you can use 3.3V but backlight brightness +// will be lower. + +// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP +// ###### + +// For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin +// designation +//#define TFT_CS PIN_D8 // Chip select control pin D8 +//#define TFT_DC PIN_D3 // Data Command control pin +//#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next +// line) #define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is +// connected to NodeMCU RST or 3.3V + +//#define TFT_BL PIN_D1 // LED back-light (only for ST7789 with backlight +// control pin) + +//#define TOUCH_CS PIN_D2 // Chip select pin (T_CS) of touch screen + +//#define TFT_WR PIN_D2 // Write strobe for modified Raspberry Pi TFT only + +// ###### FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES +// ###### + +// Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a +// performance impact but saves pins for other functions. It is best not to +// connect MISO as some displays do not tristate that line wjen chip select is +// high! On NodeMCU 1.0 SD0=MISO, SD1=MOSI, CLK=SCLK to connect to TFT in +// overlap mode On NodeMCU V3 S0 =MISO, S1 =MOSI, S2 =SCLK In ESP8266 overlap +// mode the following must be defined + +//#define TFT_SPI_OVERLAP + +// In ESP8266 overlap mode the TFT chip select MUST connect to pin D3 +//#define TFT_CS PIN_D3 +//#define TFT_DC PIN_D5 // Data Command control pin +//#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next +// line) #define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is +// connected to NodeMCU RST or 3.3V + +// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP +// ###### + +// For ESP32 Dev board (only tested with ILI9341 display) +// The hardware SPI can be mapped to any pins + +//#define TFT_MISO 19 +//#define TFT_MOSI 23 +//#define TFT_SCLK 18 +//#define TFT_CS 15 // Chip select control pin +//#define TFT_DC 2 // Data Command control pin +//#define TFT_RST 4 // Reset pin (could connect to RST pin) +//#define TFT_RST -1 // Set TFT_RST to -1 if display RESET is connected to +// ESP32 board RST + +//#define TFT_BL 32 // LED back-light (only for ST7789 with backlight control +// pin) + +//#define TOUCH_CS 21 // Chip select pin (T_CS) of touch screen + +//#define TFT_WR 22 // Write strobe for modified Raspberry Pi TFT only + +// For the M5Stack module use these #define lines +//#define TFT_MISO 19 +//#define TFT_MOSI 23 +//#define TFT_SCLK 18 +//#define TFT_CS 14 // Chip select control pin +//#define TFT_DC 27 // Data Command control pin +//#define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin) +//#define TFT_BL 32 // LED back-light (required for M5Stack) + +#define TFT_MOSI 15 +#define TFT_SCLK 13 +#define TFT_CS 5 // Chip select line for TFT display on Shield +#define TFT_DC 23 // Data/command line for TFT on Shield +#define TFT_RST 18 // Reset line for TFT is handled by seesaw! + +// ###### EDIT THE PINs BELOW TO SUIT YOUR ESP32 PARALLEL TFT SETUP ###### + +// The library supports 8 bit parallel TFTs with the ESP32, the pin +// selection below is compatible with ESP32 boards in UNO format. +// Wemos D32 boards need to be modified, see diagram in Tools folder. +// Only ILI9481 and ILI9341 based displays have been tested! + +// Parallel bus is only supported on ESP32 +// Uncomment line below to use ESP32 Parallel interface instead of SPI + +//#define ESP32_PARALLEL + +// The ESP32 and TFT the pins used for testing are: +//#define TFT_CS 33 // Chip select control pin (library pulls permanently low +//#define TFT_DC 15 // Data Command control pin - must use a pin in the range +// 0-31 #define TFT_RST 32 // Reset pin, toggles on startup + +//#define TFT_WR 4 // Write strobe control pin - must use a pin in the range +// 0-31 #define TFT_RD 2 // Read strobe control pin + +//#define TFT_D0 12 // Must use pins in the range 0-31 for the data bus +//#define TFT_D1 13 // so a single register write sets/clears all bits. +//#define TFT_D2 26 // Pins can be randomly assigned, this does not affect +//#define TFT_D3 25 // TFT screen update performance. +//#define TFT_D4 17 +//#define TFT_D5 16 +//#define TFT_D6 27 +//#define TFT_D7 14 + +// ################################################################################## +// +// Section 3. Define the fonts that are to be used here +// +// ################################################################################## + +// Comment out the #defines below with // to stop that font being loaded +// The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not +// normally necessary. If all fonts are loaded the extra FLASH space required is +// about 17Kbytes. To save FLASH space only enable the fonts you need! + +#define LOAD_GLCD // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes + // in FLASH +#define LOAD_FONT2 // Font 2. Small 16 pixel high font, needs ~3534 bytes in + // FLASH, 96 characters +#define LOAD_FONT4 // Font 4. Medium 26 pixel high font, needs ~5848 bytes in + // FLASH, 96 characters +#define LOAD_FONT6 // Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, + // only characters 1234567890:-.apm +#define LOAD_FONT7 // Font 7. 7 segment 48 pixel font, needs ~2438 bytes in + // FLASH, only characters 1234567890:-. +#define LOAD_FONT8 // Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, + // only characters 1234567890:-. +//#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, +// so 3 digits fit a 160 pixel TFT +#define LOAD_GFXFF // FreeFonts. Include access to the 48 Adafruit_GFX free + // fonts FF1 to FF48 and custom fonts + +// Comment out the #define below to stop the SPIFFS filing system and smooth +// font code being loaded this will save ~20kbytes of FLASH +#define SMOOTH_FONT + +// ################################################################################## +// +// Section 4. Other options +// +// ################################################################################## + +// Define the SPI clock frequency, this affects the graphics rendering speed. +// Too fast and the TFT driver will not keep up and display corruption appears. +// With an ILI9341 display 40MHz works OK, 80MHz sometimes fails +// With a ST7735 display more than 27MHz may not work (spurious pixels and +// lines) With an ILI9163 display 27 MHz works OK. The RPi typically only works +// at 20MHz maximum. + +// #define SPI_FREQUENCY 1000000 +// #define SPI_FREQUENCY 5000000 +// #define SPI_FREQUENCY 10000000 +// #define SPI_FREQUENCY 20000000 +#define SPI_FREQUENCY 27000000 // Actually sets it to 26.67MHz = 80/3 +// #define SPI_FREQUENCY 40000000 // Maximum to use SPIFFS +// #define SPI_FREQUENCY 80000000 + +// Optional reduced SPI frequency for reading TFT +#define SPI_READ_FREQUENCY 20000000 + +// The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here: +#define SPI_TOUCH_FREQUENCY 2500000 + +// The ESP32 has 2 free SPI ports i.e. VSPI and HSPI, the VSPI is the default. +// If the VSPI port is in use and pins are not accessible (e.g. TTGO T-Beam) +// then uncomment the following line: +//#define USE_HSPI_PORT + +// Comment out the following #define if "SPI Transactions" do not need to be +// supported. When commented out the code size will be smaller and sketches will +// run slightly faster, so leave it commented out unless you need it! + +// Transaction support is needed to work with SD library but not needed with +// TFT_SdFat Transaction support is required if other SPI devices are connected. + +// Transactions are automatically enabled by the library for an ESP32 (to use +// HAL mutex) so changing it here has no effect + +// #define SUPPORT_TRANSACTIONS diff --git a/User_Setups/Setup_M5stickcplus.h b/User_Setups/Setup_M5stickcplus.h new file mode 100644 index 00000000..c1f665db --- /dev/null +++ b/User_Setups/Setup_M5stickcplus.h @@ -0,0 +1,305 @@ +// USER DEFINED SETTINGS +// Set driver type, fonts to be loaded, pins used and SPI control method etc +// +// See the User_Setup_Select.h file if you wish to be able to define multiple +// setups and then easily select which setup file is used by the compiler. +// +// If this file is edited correctly then all the library example sketches +// should run without the need to make any more changes for a particular +// hardware setup! Note that some sketches are designed for a particular TFT +// pixel width/height + +// ################################################################################## +// +// Section 1. Call up the right driver file and any options for it +// +// ################################################################################## +//**#include "ST7789_Defines.h" +// Only define one driver, the other ones must be commented out +//#define ILI9341_DRIVER +// #define ST7735_DRIVER // Define additional parameters below for this +// display +//#define ILI9163_DRIVER // Define additional parameters below for this +// display #define S6D02A1_DRIVER #define RPI_ILI9486_DRIVER // 20MHz maximum +// SPI #define HX8357D_DRIVER #define ILI9481_DRIVER #define ILI9486_DRIVER +//#define ILI9488_DRIVER // WARNING: Do not connect ILI9488 display SDO to +// MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is +// high) +#define ST7789_DRIVER // Define additional parameters below for this display +//#define R61581_DRIVER + +#define TFT_DRIVER 0x7789 +// Some displays support SPI reads via the MISO pin, other displays have a +// single bi-directional SDA pin and the library will try to read this via the +// MOSI line. To use the SDA line for reading data from the TFT uncomment the +// following line: + +// #define TFT_SDA_READ // This option if for ESP32 ONLY, tested with +// ST7789 display only + +// For ST7789 ONLY, define the colour order IF the blue and red are swapped on +// your display Try ONE option at a time to find the correct colour order for +// your display + +// #define TFT_RGB_ORDER TFT_RGB // Colour order Red-Green-Blue +// #define TFT_RGB_ORDER TFT_BGR // Colour order Blue-Green-Red + +// For M5Stack ESP32 module with integrated ILI9341 display ONLY, remove // in +// line below + +// #define M5STACK + +// For ST7789, ST7735 and ILI9163 ONLY, define the pixel width and height in +// portrait orientation +#define TFT_WIDTH 135 +// #define TFT_WIDTH 128 +// #define TFT_WIDTH 240 // ST7789 240 x 240 and 240 x 320 +#define TFT_HEIGHT 240 +// #define TFT_HEIGHT 128 +// #define TFT_HEIGHT 240 // ST7789 240 x 240 +// #define TFT_HEIGHT 320 // ST7789 240 x 320 + +// For ST7735 ONLY, define the type of display, originally this was based on the +// colour of the tab on the screen protector film but this is not always true, +// so try out the different options below if the screen does not display +// graphics correctly, e.g. colours wrong, mirror images, or tray pixels at the +// edges. Comment out ALL BUT ONE of these options for a ST7735 display driver, +// save this this User_Setup file, then rebuild and upload the sketch to the +// board again: + +// #define ST7735_INITB +// #define ST7735_GREENTAB +// #define ST7735_GREENTAB2 +//#define ST7735_GREENTAB3 +// #define ST7735_GREENTAB128 // For 128 x 128 display +//#define ST7735_GREENTAB160x80 // For 160 x 80 display (BGR, inverted, 26 +// offset) +// #define ST7735_REDTAB +//#define ST7735_BLACKTAB +//#define ST7735_REDTAB160x80 // For 160 x 80 display with 24 pixel offset + +// If colours are inverted (white shows as black) then uncomment one of the next +// 2 lines try both options, one of the options should correct the inversion. + +// #define TFT_INVERSION_ON +// #define TFT_INVERSION_OFF + +// If a backlight control signal is available then define the TFT_BL pin in +// Section 2 below. The backlight will be turned ON when tft.begin() is called, +// but the library needs to know if the LEDs are ON with the pin HIGH or LOW. If +// the LEDs are to be driven with a PWM signal or turned OFF/ON then this must +// be handled by the user sketch. e.g. with digitalWrite(TFT_BL, LOW); + +// #define TFT_BACKLIGHT_ON HIGH // HIGH or LOW are options + +// ################################################################################## +// +// Section 2. Define the pins that are used to interface with the display here +// +// ################################################################################## + +// We must use hardware SPI, a minimum of 3 GPIO pins is needed. +// Typical setup for ESP8266 NodeMCU ESP-12 is : +// +// Display SDO/MISO to NodeMCU pin D6 (or leave disconnected if not reading +// TFT) Display LED to NodeMCU pin VIN (or 5V, see below) Display SCK to +// NodeMCU pin D5 Display SDI/MOSI to NodeMCU pin D7 Display DC (RS/AO)to +// NodeMCU pin D3 Display RESET to NodeMCU pin D4 (or RST, see below) +// Display CS to NodeMCU pin D8 (or GND, see below) +// Display GND to NodeMCU pin GND (0V) +// Display VCC to NodeMCU 5V or 3.3V +// +// The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up +// a control pin +// +// The DC (Data Command) pin may be labeled AO or RS (Register Select) +// +// With some displays such as the ILI9341 the TFT CS pin can be connected to GND +// if no more SPI devices (e.g. an SD Card) are connected, in this case comment +// out the #define TFT_CS line below so it is NOT defined. Other displays such +// at the ST7735 require the TFT CS pin to be toggled during setup, so in these +// cases the TFT_CS line must be defined and connected. +// +// The NodeMCU D0 pin can be used for RST +// +// +// Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin +// If 5V is not available at a pin you can use 3.3V but backlight brightness +// will be lower. + +// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP +// ###### + +// For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin +// designation +//#define TFT_CS PIN_D8 // Chip select control pin D8 +//#define TFT_DC PIN_D3 // Data Command control pin +//#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next +// line) #define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is +// connected to NodeMCU RST or 3.3V + +//#define TFT_BL PIN_D1 // LED back-light (only for ST7789 with backlight +// control pin) + +//#define TOUCH_CS PIN_D2 // Chip select pin (T_CS) of touch screen + +//#define TFT_WR PIN_D2 // Write strobe for modified Raspberry Pi TFT only + +// ###### FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES +// ###### + +// Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a +// performance impact but saves pins for other functions. Use NodeMCU SD0=MISO, +// SD1=MOSI, CLK=SCLK to connect to TFT in overlap mode + +// In ESP8266 overlap mode the following must be defined +//#define TFT_SPI_OVERLAP + +// In ESP8266 overlap mode the TFT chip select MUST connect to pin D3 +//#define TFT_CS PIN_D3 +//#define TFT_DC PIN_D5 // Data Command control pin +//#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next +// line) #define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is +// connected to NodeMCU RST or 3.3V + +// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP +// ###### + +// For ESP32 Dev board (only tested with ILI9341 display) +// The hardware SPI can be mapped to any pins + +//#define TFT_MISO 19 +//#define TFT_MOSI 23 +//#define TFT_SCLK 18 +//#define TFT_CS 15 // Chip select control pin +//#define TFT_DC 2 // Data Command control pin +//#define TFT_RST 4 // Reset pin (could connect to RST pin) +//#define TFT_RST -1 // Set TFT_RST to -1 if display RESET is connected to +// ESP32 board RST + +//#define TFT_BL 32 // LED back-light (only for ST7789 with backlight control +// pin) + +//#define TOUCH_CS 21 // Chip select pin (T_CS) of touch screen + +//#define TFT_WR 22 // Write strobe for modified Raspberry Pi TFT only + +// For the M5Stack module use these #define lines +//#define TFT_MISO 19 +//#define TFT_MOSI 23 +//#define TFT_SCLK 18 +//#define TFT_CS 14 // Chip select control pin +//#define TFT_DC 27 // Data Command control pin +//#define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin) +//#define TFT_BL 32 // LED back-light (required for M5Stack) + +#define TFT_MOSI 15 +#define TFT_SCLK 13 +#define TFT_CS 5 // Chip select line for TFT display on Shield +#define TFT_DC 23 // Data/command line for TFT on Shield +#define TFT_RST 18 // Reset line for TFT is handled by seesaw! + +// ###### EDIT THE PINs BELOW TO SUIT YOUR ESP32 PARALLEL TFT SETUP ###### + +// The library supports 8 bit parallel TFTs with the ESP32, the pin +// selection below is compatible with ESP32 boards in UNO format. +// Wemos D32 boards need to be modified, see diagram in Tools folder. +// Only ILI9481 and ILI9341 based displays have been tested! + +// Parallel bus is only supported on ESP32 +// Uncomment line below to use ESP32 Parallel interface instead of SPI + +//#define ESP32_PARALLEL + +// The ESP32 and TFT the pins used for testing are: +//#define TFT_CS 33 // Chip select control pin (library pulls permanently low +//#define TFT_DC 15 // Data Command control pin - must use a pin in the range +// 0-31 #define TFT_RST 32 // Reset pin, toggles on startup + +//#define TFT_WR 4 // Write strobe control pin - must use a pin in the range +// 0-31 #define TFT_RD 2 // Read strobe control pin + +//#define TFT_D0 12 // Must use pins in the range 0-31 for the data bus +//#define TFT_D1 13 // so a single register write sets/clears all bits. +//#define TFT_D2 26 // Pins can be randomly assigned, this does not affect +//#define TFT_D3 25 // TFT screen update performance. +//#define TFT_D4 17 +//#define TFT_D5 16 +//#define TFT_D6 27 +//#define TFT_D7 14 + +// ################################################################################## +// +// Section 3. Define the fonts that are to be used here +// +// ################################################################################## + +// Comment out the #defines below with // to stop that font being loaded +// The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not +// normally necessary. If all fonts are loaded the extra FLASH space required is +// about 17Kbytes. To save FLASH space only enable the fonts you need! + +#define LOAD_GLCD // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes + // in FLASH +#define LOAD_FONT2 // Font 2. Small 16 pixel high font, needs ~3534 bytes in + // FLASH, 96 characters +#define LOAD_FONT4 // Font 4. Medium 26 pixel high font, needs ~5848 bytes in + // FLASH, 96 characters +#define LOAD_FONT6 // Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, + // only characters 1234567890:-.apm +#define LOAD_FONT7 // Font 7. 7 segment 48 pixel font, needs ~2438 bytes in + // FLASH, only characters 1234567890:-. +#define LOAD_FONT8 // Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, + // only characters 1234567890:-. +//#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, +// so 3 digits fit a 160 pixel TFT +#define LOAD_GFXFF // FreeFonts. Include access to the 48 Adafruit_GFX free + // fonts FF1 to FF48 and custom fonts + +// Comment out the #define below to stop the SPIFFS filing system and smooth +// font code being loaded this will save ~20kbytes of FLASH +//#define SMOOTH_FONT + +// ################################################################################## +// +// Section 4. Other options +// +// ################################################################################## + +// Define the SPI clock frequency, this affects the graphics rendering speed. +// Too fast and the TFT driver will not keep up and display corruption appears. +// With an ILI9341 display 40MHz works OK, 80MHz sometimes fails +// With a ST7735 display more than 27MHz may not work (spurious pixels and +// lines) With an ILI9163 display 27 MHz works OK. The RPi typically only works +// at 20MHz maximum. + +// #define SPI_FREQUENCY 1000000 +// #define SPI_FREQUENCY 5000000 +// #define SPI_FREQUENCY 10000000 +// #define SPI_FREQUENCY 20000000 +#define SPI_FREQUENCY 27000000 // Actually sets it to 26.67MHz = 80/3 +// #define SPI_FREQUENCY 40000000 // Maximum to use SPIFFS +// #define SPI_FREQUENCY 80000000 + +// Optional reduced SPI frequency for reading TFT +#define SPI_READ_FREQUENCY 20000000 + +// The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here: +#define SPI_TOUCH_FREQUENCY 2500000 + +// The ESP32 has 2 free SPI ports i.e. VSPI and HSPI, the VSPI is the default. +// If the VSPI port is in use and pins are not accessible (e.g. TTGO T-Beam) +// then uncomment the following line: +//#define USE_HSPI_PORT + +// Comment out the following #define if "SPI Transactions" do not need to be +// supported. When commented out the code size will be smaller and sketches will +// run slightly faster, so leave it commented out unless you need it! + +// Transaction support is needed to work with SD library but not needed with +// TFT_SdFat Transaction support is required if other SPI devices are connected. + +// Transactions are automatically enabled by the library for an ESP32 (to use +// HAL mutex) so changing it here has no effect + +// #define SUPPORT_TRANSACTIONS diff --git a/examples/Test and diagnostics/Colour_Test/Colour_Test_M5stickC|Plus.ino b/examples/Test and diagnostics/Colour_Test/Colour_Test_M5stickC|Plus.ino new file mode 100644 index 00000000..a244bc2b --- /dev/null +++ b/examples/Test and diagnostics/Colour_Test/Colour_Test_M5stickC|Plus.ino @@ -0,0 +1,144 @@ + +// Diagnostic test for the displayed colour order +// +// Written by Bodmer 17/2/19 for the TFT_eSPI library: +// https://github.com/Bodmer/TFT_eSPI + +/* + Different hardware manufacturers use different colour order + configurations at the hardware level. This may result in + incorrect colours being displayed. + + Incorrectly displayed colours could also be the result of + using the wrong display driver in the library setup file. + + Typically displays have a control register (MADCTL) that can + be used to set the Red Green Blue (RGB) colour order to RGB + or BRG so that red and blue are swapped on the display. + + This control register is also used to manage the display + rotation and coordinate mirroring. The control register + typically has 8 bits, for the ILI9341 these are: + + Bit Function + 7 Mirror Y coordinate (row address order) + 6 Mirror X coordinate (column address order) + 5 Row/column exchange (for rotation) + 4 Refresh direction (top to bottom or bottom to top in portrait orientation) + 3 RGB order (swaps red and blue) + 2 Refresh direction (top to bottom or bottom to top in landscape orientation) + 1 Not used + 0 Not used + + The control register bits can be written with this example command sequence: + + tft.writecommand(TFT_MADCTL); + tft.writedata(0x48); // Bits 6 and 3 set + + 0x48 is the default value for ILI9341 (0xA8 for ESP32 M5STACK) + in rotation 0 orientation. + + Another control register can be used to "invert" colours, + this swaps black and white as well as other colours (e.g. + green to magenta, red to cyan, blue to yellow). + + To invert colours insert this line after tft.init() or tft.begin(): + + tft.invertDisplay( invert ); // Where invert is true or false +M5stickC/Plus Sample +*/ + +#include + +#include // Hardware-specific library + +TFT_eSPI tft = TFT_eSPI(); // Invoke custom library +#include "AXP192.h" //Needed for Backlight +AXP192 Axp = AXP192(); //Needed for Backlight +void setup(void) { + Axp.begin(); //Needed for Backlight + // Axp.ScreenBreath( 7 ); // 一番暗くする(2.5V) + //delay(1000); + //Axp.ScreenBreath( 10 ); // 一番明るくする(3.0V) + + //Axp.SetLDO2( false ); // 液晶OFF + //delay(1000); + //Axp.SetLDO2( true ); // 液晶ON + + tft.init(); + + tft.fillScreen(TFT_BLACK); + tft.drawRect(0, 0, tft.width(), tft.height(), TFT_GREEN); + + // Set "cursor" at top left corner of display (0,0) and select font 4 + tft.setCursor(0, 4, 4); + + // Set the font colour to be white with a black background + tft.setTextColor(TFT_WHITE); + + // We can now plot text on screen using the "print" class + tft.println(" Initialised default\n"); + tft.println(" White text"); + + tft.setTextColor(TFT_RED); + tft.println(" Red text"); + + tft.setTextColor(TFT_GREEN); + tft.println(" Green text"); + + tft.setTextColor(TFT_BLUE); + tft.println(" Blue text"); + + delay(5000); +} + +void loop() { + + tft.invertDisplay(false); // Where i is true or false + + tft.fillScreen(TFT_BLACK); + tft.drawRect(0, 0, tft.width(), tft.height(), TFT_GREEN); + + tft.setCursor(0, 4, 4); + + tft.setTextColor(TFT_WHITE); + tft.println(" Invert OFF\n"); + + tft.println(" White text"); + + tft.setTextColor(TFT_RED); + tft.println(" Red text"); + + tft.setTextColor(TFT_GREEN); + tft.println(" Green text"); + + tft.setTextColor(TFT_BLUE); + tft.println(" Blue text"); + + delay(5000); + + + // Binary inversion of colours + tft.invertDisplay(true); // Where i is true or false + + tft.fillScreen(TFT_BLACK); + tft.drawRect(0, 0, tft.width(), tft.height(), TFT_GREEN); + + tft.setCursor(0, 4, 4); + + tft.setTextColor(TFT_WHITE); + tft.println(" Invert ON\n"); + + tft.println(" White text"); + + tft.setTextColor(TFT_RED); + tft.println(" Red text"); + + tft.setTextColor(TFT_GREEN); + tft.println(" Green text"); + + tft.setTextColor(TFT_BLUE); + tft.println(" Blue text"); + + delay(5000); +}