-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathnodes.py
117 lines (95 loc) · 3.54 KB
/
nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import folder_paths
import torch
from .seecoder import SemanticExtractionEncoder, QueryTransformer, Decoder
from .swin import SwinTransformer
import safetensors.torch
import os
import sys
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
import comfy.model_management
folder_paths.folder_names_and_paths["seecoder"] = ([os.path.join(folder_paths.models_dir, "seecoders")], folder_paths.supported_pt_extensions)
_swine_config = {
"embed_dim" : 192,
"depths" : [ 2, 2, 18, 2 ],
"num_heads" : [ 6, 12, 24, 48 ],
"window_size" : 12,
"ape" : False,
"drop_path_rate" : 0.3,
"patch_norm" : True,
}
_decoder_config = {
"inchannels" : {'res3' : 384, 'res4' : 768, 'res5' : 1536},
"trans_input_tags" : ['res3', 'res4', 'res5'],
"trans_dim" : 768,
"trans_dropout" : 0.1,
"trans_nheads" : 8,
"trans_feedforward_dim" : 1024,
"trans_num_layers" : 6,
}
_qt_config = {
"in_channels":768,
"hidden_dim":768,
"num_queries":[4, 144],
"nheads":8,
"num_layers":9,
"feedforward_dim":2048,
"pre_norm":False,
"num_feature_levels":3,
"enforce_input_project":False,
"with_fea2d_pos":False
}
class SEECoderImageEncode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"seecoder_name": (folder_paths.get_filename_list("seecoder"), ),
"image": ("IMAGE",),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "SEECoderEncode"
CATEGORY = "conditioning"
def SEECoderEncode(self, seecoder_name, image):
device = comfy.model_management.get_torch_device()
path = folder_paths.get_full_path("seecoder", seecoder_name)
sd = safetensors.torch.load_file(path, device="cpu")
sd = {k[10:] if k.startswith('ctx.image.') else k: v for k,v in sd.items()}
is_pa = any([x.startswith("qtransformer.pe_layer") for x in sd.keys()])
swine_config = _swine_config.copy()
decoder_config = _decoder_config.copy()
qt_config = _qt_config.copy()
if is_pa:
qt_config['with_fea2d_pos'] = True
swine = SwinTransformer(**swine_config)
decoder = Decoder(**decoder_config)
queryTransformer = QueryTransformer(**qt_config)
SEE_encoder = SemanticExtractionEncoder(swine, decoder, queryTransformer)
SEE_encoder.load_state_dict(sd)
SEE_encoder = SEE_encoder.to(device)
SEE_encoder.eval()
encoding = SEE_encoder(image.movedim(-1,1).to(device)).cpu()
return ([[encoding, {}]], )
class ConcatConditioning:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"conditioning_to": ("CONDITIONING",),
"conditioning_from": ("CONDITIONING",),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "SEECoderEncode"
CATEGORY = "_for_testing"
def SEECoderEncode(self, conditioning_to, conditioning_from):
out = []
if len(conditioning_from) > 1:
print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
cond_from = conditioning_from[0][0]
for i in range(len(conditioning_to)):
t1 = conditioning_to[i][0]
tw = torch.cat((t1, cond_from),1)
n = [tw, conditioning_to[i][1].copy()]
out.append(n)
return (out, )
NODE_CLASS_MAPPINGS = {
"SEECoderImageEncode": SEECoderImageEncode,
"ConcatConditioning": ConcatConditioning,
}